Preserving Population Diversity Based on Transformed Semantics in Genetic Programming for Symbolic Regression

被引:16
|
作者
Chen, Qi [1 ]
Xue, Bing [1 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, Evolutionary Computat Res Grp, Wellington 6140, New Zealand
基金
中国国家自然科学基金;
关键词
Statistics; Sociology; Genetic programming; Measurement; Entropy; Semantics; Correlation; Genetic programming (GP); population diversity; symbolic regression; CROSSOVER;
D O I
10.1109/TEVC.2020.3046569
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Population diversity plays an important role in avoiding premature convergence in evolutionary techniques including genetic programming (GP). Obtaining an adequate level of diversity during the evolutionary process has became a concern of many previous researches in GP. This work proposes a new novelty metric for entropy-based diversity measure for GP. The new novelty metric is based on the transformed semantics of models in GP, where the semantics are the set of outputs of a model on the training data and principal component analysis is used for a transformation of the semantics. Based on the new novelty metric, a new diversity preserving framework, which incorporates a new fitness function and a new selection operator, is proposed to help GP achieve a good balance between the exploration and the exploitation, thus enhancing its learning and generalization performance. Compared with two stat-of-the-art diversity preserving methods, the new method can generalize better and reduce the overfitting trend more effectively in most cases. Further examinations on the properties of the search process confirm that the new framework notably enhances the evolvability and locality of GP.
引用
收藏
页码:433 / 447
页数:15
相关论文
共 50 条
  • [31] Estimating MLC NAND Flash Endurance: A Genetic Programming Based Symbolic Regression Application
    Hogan, Damien
    Arbuckle, Tom
    Ryan, Conor
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 1285 - 1292
  • [32] Transformation of CPS coordinates using symbolic regression and genetic programming
    Chou, HJ
    Wu, CH
    Su, WH
    Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005, : 301 - 306
  • [33] Rademacher Complexity for Enhancing the Generalization of Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2382 - 2395
  • [34] Combining Conformal Prediction and Genetic Programming for Symbolic Interval Regression
    Pham Thi Thuong
    Nguyen Xuan Hoai
    Yao, Xin
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 1001 - 1008
  • [35] Genetic Programming-Based Selection of Imputation Methods in Symbolic Regression with Missing Values
    Al-Helali, Baligh
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    AI 2020: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 12576 : 163 - 175
  • [36] Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression
    Chang, Chi-Hsien
    Chiang, Tu-Chin
    Hsu, Tzu-Hao
    Chuang, Ting-Shuo
    Fang, Wen-Zhong
    Yu, Tian-Li
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 543 - 546
  • [37] Symbolic regression of crop pest forecasting using genetic programming
    Alhadidi, Basim
    Al-Afeef, Alaa
    Al-Hiary, Heba
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 : 1332 - 1342
  • [38] A Genetic Programming-based Wrapper Imputation Method for Symbolic Regression with Incomplete Data
    Al-Helali, Baligh
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2395 - 2402
  • [39] A Hybrid Grammar-based Genetic Programming for Symbolic Regression Problems
    Motta, Flavio A. A.
    de Freitas, Joao M.
    de Souza, Felipe R.
    Bernardino, Heder S.
    de Oliveira, Itamar L.
    Barbosa, Helio J. C.
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2097 - 2104
  • [40] An Analysis of Exchanging Fitness Cases with Population Size in Symbolic Regression Genetic Programming with Respect to the Computational Model
    Applegate, Douglas
    Mayfield, Blayne
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 3111 - 3116