Higher doses of bisphosphonates further improve bone mass, architecture, and strength but not the tissue material properties in aged rats

被引:36
作者
Shahnazari, Mohammad [1 ]
Yao, Wei [1 ]
Dai, WeiWei [1 ]
Wang, Bob [1 ]
Ionova-Martin, Sophi S. [2 ,3 ]
Ritchie, Robert O. [2 ,3 ]
Heeren, Daniel [1 ]
Burghardt, Andrew J. [4 ]
Nicolella, Daniel P. [5 ]
Kimiecik, Michael G. [2 ,3 ]
Lane, Nancy E. [1 ]
机构
[1] Univ Calif Davis, Med Ctr, Dept Internal Med, Sacramento, CA 95817 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94158 USA
[5] SW Res Inst, Mech & Mat Engn Div, San Antonio, TX 78245 USA
基金
美国国家卫生研究院;
关键词
Bisphosphonate; Bisphosphonate dose; Structural properties; Material properties; Bone mineralization; TRABECULAR BONE; BIOMECHANICAL PROPERTIES; MECHANICAL-PROPERTIES; VERTEBRAL FRACTURES; MINERAL DENSITY; RISEDRONATE TREATMENT; COMPUTED-TOMOGRAPHY; ALENDRONATE THERAPY; RANDOMIZED-TRIAL; TURNOVER;
D O I
10.1016/j.bone.2009.11.019
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We report the results of a series of experiments designed to determine the effects of ibandronate (Ibn) and risedronate (Ris) on a number of bone quality parameters in aged osteopenic rats to explain how bone material and bone mass may be affected by the dose of bisphosphonates (BP) and contribute to their anti-fracture efficacy. Eighteen-month old female rats underwent either ovariectomy or sham surgery. The ovariectomized (OVX) groups were left untreated for 2 months to develop osteopenia. Treatments started at 20 months of age as follows: sham and OVX control (treated with saline), OVX + risedronate 30 and 90 (30 or 90 mu g/kg/dose), and OVX + ibandronate 30 and 90 (30 or 90 mu g/kg/dose). The treatments were given monthly for 4 months by subcutaneous injection. At sacrifice at 24 months of age the 4th lumbar vertebra was used for mu CT scans (bone mass, architecture, and degree of mineralization of bone, DMB) and histomorphometry, and the 6th lumbar vertebra, tibia, and femur were collected for biomechanical testing to determine bone structural and material strength, cortical fracture toughness, and tissue elastic modulus. The compression testing of the vertebral bodies (LVB6) was simulated using finite-element analysis (FEA) to also estimate the bone structural stiffness. Both Ibn and Ris dose-dependently increased bone mass and improved vertebral bone microarchitecture and mechanical properties compared to OVX control. Estimates of vertebral maximum stress from FEA were correlated with vertebral maximum load (r = 0.5, p < 0.001) and maximum stress (r = 0.4, p < 0.005) measured experimentally. Tibial bone bending modulus and cortical strength increased compared to OVX with both BP but no dose-dependent effect was observed. DMB and elastic modulus of trabecular bone were improved with Ibn 30 compared to OVX but were not affected in other BP-treated groups. DMB of tibial cortical bone showed no change with BP treatments. The fracture toughness examined in midshaft femurs did not change with BP even with the higher doses. In summary, the anti-fracture efficacy of BP is largely due to their preservation of bone mass and while the higher doses further improve the bone structural properties do not improve the localized bone material characteristics such as tissue strength, elastic modulus, and cortical toughness. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1267 / 1274
页数:8
相关论文
共 63 条
[1]  
Abrahamsen B, 2009, J BONE MINER RES, V24, P1095, DOI [10.1359/JBMR.081247, 10.1359/jbmr.081247]
[2]   Bone biomechanical properties in prostaglandin EP1 and EP2 knockout mice [J].
Akhter, MP ;
Cullen, DM ;
Gong, G ;
Recker, RR .
BONE, 2001, 29 (02) :121-125
[3]   Three years of alendronate treatment results in similar levels of vertebral microdamage as after one year of treatment [J].
Allen, Matthew R. ;
Burr, David B. .
JOURNAL OF BONE AND MINERAL RESEARCH, 2007, 22 (11) :1759-1765
[4]   Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth [J].
Balooch, G ;
Marshall, GW ;
Marshall, SJ ;
Warren, OL ;
Asif, SAS ;
Balooch, M .
JOURNAL OF BIOMECHANICS, 2004, 37 (08) :1223-1232
[5]  
Bauss F, 2002, J RHEUMATOL, V29, P2200
[6]   Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures [J].
Black, DM ;
Cummings, SR ;
Karpf, DB ;
Cauley, JA ;
Thompson, DE ;
Nevitt, MC ;
Bauer, DC ;
Genant, HK ;
Haskell, WL ;
Marcus, R ;
Ott, SM ;
Torner, JC ;
Quandt, SA ;
Reiss, TF ;
Ensrud, KE .
LANCET, 1996, 348 (9041) :1535-1541
[7]  
BLACK DM, 2007, NEW ENGL J MED, V356, P1809, DOI [DOI 10.1056/NEJMOA067312, 10.1056/NEJMoa067312]
[8]   Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women [J].
Boivin, GY ;
Chavassieux, PM ;
Santora, AC ;
Yates, J ;
Meunier, PJ .
BONE, 2000, 27 (05) :687-694
[9]   Ten years' experience with alendronate for osteoporosis in postmenopausal women [J].
Bone, HG ;
Hosking, D ;
Devogelaer, J ;
Tucci, JR ;
Emkey, RD ;
Tonino, RP ;
Rodriguez-Portales, JA ;
Downs, RW ;
Gupta, J ;
Santora, AC ;
Liberman, UA .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (12) :1189-1199
[10]   Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: Sequential triple biopsy studies with micro-computed tomography [J].
Borah, B ;
Dufresne, TE ;
Ritman, EL ;
Jorgensen, SM ;
Liu, S ;
Chmielewski, PA ;
Phipps, RJ ;
Zhou, XJ ;
Sibonga, JD ;
Turner, RT .
BONE, 2006, 39 (02) :345-352