Universal velocity profile for coherent vortices in two-dimensional turbulence

被引:11
作者
Chertkov, M. [1 ,2 ]
Kolokolov, I. [1 ,2 ,3 ]
Lebedev, V. [1 ,2 ,3 ]
机构
[1] LANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] LANL, Div Theoret, Los Alamos, NM 87545 USA
[3] LD Landau Theoret Phys Inst, Moscow 119334, Russia
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 01期
基金
美国国家科学基金会;
关键词
INVERSE ENERGY CASCADE;
D O I
10.1103/PhysRevE.81.015302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two-dimensional turbulence generated in a finite box produces large-scale coherent vortices coexisting with small-scale fluctuations. We present a rigorous theory explaining the eta=1/4 scaling in the V proportional to r(-n) law of the velocity spatial profile within a vortex, where r is the distance from the vortex center. This scaling, consistent with earlier numerical and laboratory measurements, is universal in its independence of details of the small-scale injection of turbulent fluctuations and details of the shape of the box.
引用
收藏
页数:4
相关论文
共 26 条
[1]  
Batchelor G.K., 1969, Phys. Fluids, V12, pII, DOI [DOI 10.1063/1.1692443, 10.1063/1.1692443]
[2]   Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior [J].
Boffetta, G ;
Celani, A ;
Vergassola, M .
PHYSICAL REVIEW E, 2000, 61 (01) :R29-R32
[3]   INVERSE ENERGY CASCADE IN STATIONARY 2-DIMENSIONAL HOMOGENEOUS TURBULENCE [J].
BORUE, V .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1475-1478
[4]  
CHARNEY JG, 1971, J ATMOS SCI, V28, P1087, DOI 10.1175/1520-0469(1971)028<1087:GT>2.0.CO
[5]  
2
[6]   Classification of self-organized vortices in two-dimensional turbulence: The case of a bounded domain [J].
Chavanis, PH ;
Sommeria, J .
JOURNAL OF FLUID MECHANICS, 1996, 314 :267-297
[7]   Physical mechanism of the two-dimensional inverse energy cascade [J].
Chen, SY ;
Ecke, RE ;
Eyink, GL ;
Rivera, M ;
Wan, MP ;
Xiao, ZL .
PHYSICAL REVIEW LETTERS, 2006, 96 (08) :1-4
[8]   Dynamics of energy condensation in two-dimensional turbulence [J].
Chertkov, M. ;
Connaughton, C. ;
Kolokolov, I. ;
Lebedev, V. .
PHYSICAL REVIEW LETTERS, 2007, 99 (08)
[9]   Two-Dimensional Navier-Stokes Turbulence in Bounded Domains [J].
Clercx, H. J. H. ;
van Heijst, G. J. F. .
APPLIED MECHANICS REVIEWS, 2009, 62 (02) :1-25
[10]  
Frisch U., 1995, Turbulence: The Legacy of A