Data-Driven Optimal Transport

被引:20
作者
Trigila, Giulio [1 ]
Tabak, Esteban G. [2 ]
机构
[1] Tech Univ Munich, Zentrum Math, Boltzmannstr 3, D-85747 Munich, Germany
[2] NYU, Courant Inst, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
MONGE-AMPERE EQUATION; POLAR FACTORIZATION; NUMERICAL-METHOD;
D O I
10.1002/cpa.21588
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of optimal transport between two distributions rho(x) and mu(y) is extended to situations where the distributions are only known through a finite number of samples {x(i)} and {y(j)}. A weak formulation is proposed, based on the dual of the Kantorovich formulation, with two main modifications: replacing the expected values in the objective function by their empirical means over the {x(i)} and {y(j)}, and restricting the dual variables u(x) and v(y) to a suitable set of test functions adapted to the local availability of sample points. A procedure is proposed and tested for the numerical solution of this problem, based on a fluidlike flow in phase space, where the sample points play the role of active Lagrangian markers. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:613 / 648
页数:36
相关论文
共 50 条
[41]   Regularity theory and geometry of unbalanced optimal transport [J].
Gallouet, Thomas ;
Ghezzi, Roberta ;
Vialard, Francois-Xavier .
JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (07)
[42]   FROM KNOTHE'S TRANSPORT TO BRENIER'S MAP AND A CONTINUATION METHOD FOR OPTIMAL TRANSPORT [J].
Carlier, G. ;
Galichon, A. ;
Santambrogio, F. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 41 (06) :2554-2576
[43]   Dealing with moment measures via entropy and optimal transport [J].
Santambrogio, Filippo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (02) :418-436
[44]   Regularity of optimal transport maps on multiple products of spheres [J].
Figalli, Alessio ;
Kim, Young-Heon ;
McCann, Robert J. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (04) :1131-1166
[45]   Free boundary regularity in the optimal partial transport problem [J].
Indrei, Emanuel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (11) :2497-2528
[46]   MULTI-MARGINAL OPTIMAL TRANSPORT ON THE HEISENBERG GROUP [J].
Pass, Brendan ;
Pinamonti, Andrea ;
Vedovato, Mattia .
METHODS AND APPLICATIONS OF ANALYSIS, 2021, 28 (01) :61-75
[47]   Optimal transport from a point-like source [J].
Cardin, Franco ;
Banavar, Jayanth R. ;
Maritan, Amos .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2020, 32 (05) :1325-1335
[48]   Flow updates for domain decomposition of entropic optimal transport [J].
Medina, Ismael ;
Schmitzer, Bernhard .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (03) :1239-1270
[49]   A NEWTON ALGORITHM FOR SEMIDISCRETE OPTIMAL TRANSPORT WITH STORAGE FEES [J].
Bansil, Mohit ;
Kitagawa, Jun .
SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) :2586-2613
[50]   Sobolev estimates for optimal transport maps on Gaussian spaces [J].
Fang, Shizan ;
Nolot, Vincent .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) :5045-5084