Data-Driven Optimal Transport

被引:20
作者
Trigila, Giulio [1 ]
Tabak, Esteban G. [2 ]
机构
[1] Tech Univ Munich, Zentrum Math, Boltzmannstr 3, D-85747 Munich, Germany
[2] NYU, Courant Inst, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
MONGE-AMPERE EQUATION; POLAR FACTORIZATION; NUMERICAL-METHOD;
D O I
10.1002/cpa.21588
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of optimal transport between two distributions rho(x) and mu(y) is extended to situations where the distributions are only known through a finite number of samples {x(i)} and {y(j)}. A weak formulation is proposed, based on the dual of the Kantorovich formulation, with two main modifications: replacing the expected values in the objective function by their empirical means over the {x(i)} and {y(j)}, and restricting the dual variables u(x) and v(y) to a suitable set of test functions adapted to the local availability of sample points. A procedure is proposed and tested for the numerical solution of this problem, based on a fluidlike flow in phase space, where the sample points play the role of active Lagrangian markers. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:613 / 648
页数:36
相关论文
共 50 条
[31]   A Sparse Multiscale Algorithm for Dense Optimal Transport [J].
Schmitzer, Bernhard .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2016, 56 (02) :238-259
[32]   Domain decomposition for entropy regularized optimal transport [J].
Bonafini, Mauro ;
Schmitzer, Bernhard .
NUMERISCHE MATHEMATIK, 2021, 149 (04) :819-870
[33]   Texture Mapping via Optimal Mass Transport [J].
Dominitz, Ayelet ;
Tannenbaum, Allen .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (03) :419-433
[34]   On the smoothness of the potential function in Riemannian optimal transport [J].
Delanoe, Philippe .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2015, 23 (01) :11-89
[35]   OPTIMAL TRANSPORT FOR SEISMIC FULL WAVEFORM INVERSION [J].
Engquist, Bjorn ;
Froese, Brittany D. ;
Yang, Yunan .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (08) :2309-2330
[36]   Computational Optimal Transport and Filtering on Riemannian Manifolds [J].
Grange, Daniel ;
Al-Jarrah, Mohammad ;
Baptista, Ricardo ;
Taghvaei, Amirhossein ;
Georgiou, Tryphon T. ;
Phillips, Sean ;
Tannenbaum, Allen .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :3495-3500
[37]   Optimal Transport on Completely Integrable Toric Manifolds [J].
Myga, Szymon .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (05) :5359-5371
[38]   A GLIMPSE INTO THE DIFFERENTIAL TOPOLOGY AND GEOMETRY OF OPTIMAL TRANSPORT [J].
McCann, Robert J. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (04) :1605-1621
[39]   Optimal transport maps on Alexandrov spaces revisited [J].
Rajala, Tapio ;
Schultz, Timo .
MANUSCRIPTA MATHEMATICA, 2022, 169 (1-2) :1-18
[40]   PLUGIN ESTIMATION OF SMOOTH OPTIMAL TRANSPORT MAPS [J].
Manole, Tudor ;
Balakrishnan, Sivaraman ;
Niles-Weed, Jonathan ;
Wasserman, Larry .
ANNALS OF STATISTICS, 2024, 52 (03) :966-998