Data-Driven Optimal Transport

被引:19
作者
Trigila, Giulio [1 ]
Tabak, Esteban G. [2 ]
机构
[1] Tech Univ Munich, Zentrum Math, Boltzmannstr 3, D-85747 Munich, Germany
[2] NYU, Courant Inst, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
MONGE-AMPERE EQUATION; POLAR FACTORIZATION; NUMERICAL-METHOD;
D O I
10.1002/cpa.21588
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of optimal transport between two distributions rho(x) and mu(y) is extended to situations where the distributions are only known through a finite number of samples {x(i)} and {y(j)}. A weak formulation is proposed, based on the dual of the Kantorovich formulation, with two main modifications: replacing the expected values in the objective function by their empirical means over the {x(i)} and {y(j)}, and restricting the dual variables u(x) and v(y) to a suitable set of test functions adapted to the local availability of sample points. A procedure is proposed and tested for the numerical solution of this problem, based on a fluidlike flow in phase space, where the sample points play the role of active Lagrangian markers. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:613 / 648
页数:36
相关论文
共 50 条
[21]   On discontinuity of planar optimal transport maps [J].
Chodosh, Otis ;
Jain, Vishesh ;
Lindsey, Michael ;
Panchev, Lyuboslav ;
Rubinstein, Yanir A. .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2015, 7 (02) :239-260
[22]   A User's Guide to Optimal Transport [J].
Ambrosio, Luigi ;
Gigli, Nicola .
MODELLING AND OPTIMISATION OF FLOWS ON NETWORKS, CETRARO, ITALY 2009, 2013, 2062 :1-155
[23]   Techniques for continuous optimal transport problem [J].
Dieci, Luca ;
Omarov, Daniyar .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 146 :176-191
[24]   Existence and uniqueness of optimal transport maps [J].
Cavalletti, Fabio ;
Huesmann, Martin .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (06) :1367-1377
[25]   Parabolic Optimal Transport Equations on Manifolds [J].
Kim, Young-Heon ;
Streets, Jeffrey ;
Warren, Micah .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (19) :4325-4350
[26]   Optimal transport and variational Bayesian inference [J].
Bahraini, Alireza ;
Sadeghi, Saeed .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2023, 162
[27]   OPTIMAL TRANSPORT AND THE GAUSS CURVATURE EQUATION [J].
Guillen, Nestor ;
Kitagawa, Jun .
METHODS AND APPLICATIONS OF ANALYSIS, 2020, 27 (04) :387-404
[28]   OPTIMAL-TRANSPORT-BASED MESH ADAPTIVITY ON THE PLANE AND SPHERE USING FINITE ELEMENTS [J].
Mcrae, Andrew T. T. ;
Cotter, Colin J. ;
Budd, Chris J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02) :A1121-A1148
[29]   Asymptotic analysis of domain decomposition for optimal transport [J].
Bonafini, Mauro ;
Medina, Ismael ;
Schmitzer, Bernhard .
NUMERISCHE MATHEMATIK, 2023, 153 (2-3) :451-492
[30]   Optimal transport and Ricci curvature in Finsler geometry [J].
Ohta, Shin-ichi .
PROBABILISTIC APPROACH TO GEOMETRY, 2010, 57 :323-342