Data-Driven Optimal Transport

被引:19
|
作者
Trigila, Giulio [1 ]
Tabak, Esteban G. [2 ]
机构
[1] Tech Univ Munich, Zentrum Math, Boltzmannstr 3, D-85747 Munich, Germany
[2] NYU, Courant Inst, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
MONGE-AMPERE EQUATION; POLAR FACTORIZATION; NUMERICAL-METHOD;
D O I
10.1002/cpa.21588
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of optimal transport between two distributions rho(x) and mu(y) is extended to situations where the distributions are only known through a finite number of samples {x(i)} and {y(j)}. A weak formulation is proposed, based on the dual of the Kantorovich formulation, with two main modifications: replacing the expected values in the objective function by their empirical means over the {x(i)} and {y(j)}, and restricting the dual variables u(x) and v(y) to a suitable set of test functions adapted to the local availability of sample points. A procedure is proposed and tested for the numerical solution of this problem, based on a fluidlike flow in phase space, where the sample points play the role of active Lagrangian markers. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:613 / 648
页数:36
相关论文
共 50 条
  • [1] The optimal transport paradigm enables data compression in data-driven robust control
    Fabiani, Filippo
    Goulart, Paul J.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 2412 - 2417
  • [2] Data-Driven Mapping Between Functional Connectomes Using Optimal Transport
    Dadashkarimi, Javid
    Karbasi, Amin
    Scheinost, Dustin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 293 - 302
  • [3] DATA-DRIVEN OPTIMAL TRANSPORT COST SELECTION FOR DISTRIBUTIONALLY ROBUST OPTIMIZATION
    Blanchet, Jose
    Kang, Yang
    Murthy, Karthyek
    Zhang, Fan
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 3740 - 3751
  • [4] Data-driven Optimal Control with Data Loss
    Huan, Luo
    Azuma, Shun-ich
    2024 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS, SICE ISCS 2024, 2024, : 56 - 59
  • [5] Data-driven optimal prediction with control
    Katrutsa, Aleksandr
    Oseledets, Ivan
    Utyuzhnikov, Sergey
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 143
  • [6] Grid data transport: Planning for a data-driven grid
    Ogle, Jim
    IEEE POWER & ENERGY MAGAZINE, 2023, 21 (05): : 15 - 17
  • [7] Data ratcheting and data-driven organisational change in transport
    Heaphy, Liam
    BIG DATA & SOCIETY, 2019, 6 (02):
  • [8] Geometrically optimal gaits: a data-driven approach
    Brian Bittner
    Ross L. Hatton
    Shai Revzen
    Nonlinear Dynamics, 2018, 94 : 1933 - 1948
  • [9] Data-Driven Optimal Control of Bilinear Systems
    Yuan, Zhenyi
    Cortes, Jorge
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 (2479-2484): : 2479 - 2484
  • [10] A Data-Driven Approach for Inverse Optimal Control
    Liang, Zihao
    Hao, Wenjian
    Mou, Shaoshuai
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3632 - 3637