Understanding the lattice nitrogen stability and deactivation pathways of cubic CrN nanoparticles in the electrochemical nitrogen reduction reaction

被引:18
作者
Guo, Wenhan [1 ]
Liang, Zibin [1 ]
Tang, Yanqun [1 ]
Cai, Kunting [1 ]
Qiu, Tianjie [1 ]
Wu, Yingxiao [1 ]
Zhang, Kexin [1 ]
Gao, Song [1 ,2 ]
Zou, Ruqiang [1 ,2 ]
机构
[1] Peking Univ, Sch Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[2] Peking Univ, Inst Clean Energy, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1039/d0ta11727g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition metal nitrides (TMNs) are predicted to be highly promising electrocatalysts for the nitrogen reduction reaction (NRR) by theoretical calculations. TMNs follow a special Mars-van Krevelen (MvK) mechanism during the NRR, involving surface lattice nitrogen exchange and regeneration. It is hence essential to identify the source of nitrogen, especially taking the stability of lattice nitrogen into consideration. Herein, we investigated the deactivation process of a benchmark CrN nanoparticle catalyst (CrN NPs) with a phase-pure cubic rocksalt (RS) structure for the electrochemical NRR. The current work identifies two possible deactivation pathways for CrN: (i) potential-induced structural collapse of the catalyst including both lattice N leaching and metal dissolution and (ii) ammonia poisoning due to the accumulation and strong chemical bonding of the produced ammonia on the CrN surface. This work provides new perspectives for understanding the structural evolution of nitrogen-containing electrocatalysts for NRR research.
引用
收藏
页码:8568 / 8575
页数:8
相关论文
共 46 条
[41]   Liquid-phase chemical hydrogen storage materials [J].
Yadav, Mahendra ;
Xu, Qiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (12) :9698-9725
[42]   Quantification of Active Sites and Elucidation of the Reaction Mechanism of the Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride [J].
Yang, Xuan ;
Kattel, Shyam ;
Nash, Jared ;
Chang, Xiaoxia ;
Lee, Ji Hoon ;
Yan, Yushan ;
Chen, Jingguang G. ;
Xu, Bingjun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (39) :13768-13772
[43]   Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles [J].
Yang, Xuan ;
Nash, Jared ;
Anibal, Jacob ;
Dunwel, Marco ;
Kattel, Shyam ;
Stavitski, Eli ;
Attenkofer, Klaus ;
Chen, Jingguang G. ;
Yan, Yushan ;
Xu, Bingjun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (41) :13387-13391
[44]   Electrochemical Nitrogen Reduction Reaction on Ruthenium [J].
Yao, Yao ;
Wang, Haijiang ;
Yuan, Xiao-zi ;
Li, Hui ;
Shao, Minhua .
ACS ENERGY LETTERS, 2019, 4 (06) :1336-1341
[45]   Boron-Doped Graphene for Electrocatalytic N2 Reduction [J].
Yu, Xiaomin ;
Han, Peng ;
Wei, Zengxi ;
Huang, Linsong ;
Gu, Zhengxiang ;
Peng, Sijia ;
Ma, Jianmin ;
Zheng, Gengfeng .
JOULE, 2018, 2 (08) :1610-1622
[46]   Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies [J].
Zhang, Ling ;
Ji, Xuqiang ;
Ren, Xiang ;
Ma, Yongjun ;
Shi, Xifeng ;
Tian, Ziqi ;
Asiri, Abdullah M. ;
Chen, Liang ;
Tang, Bo ;
Sun, Xuping .
ADVANCED MATERIALS, 2018, 30 (28)