Machine learning-based coronary artery disease diagnosis: A comprehensive review

被引:139
作者
Alizadehsani, Roohallah [1 ]
Abdar, Moloud [2 ]
Roshanzamir, Mohamad [3 ]
Khosravi, Abbas [1 ]
Kebria, Parham M. [1 ]
Khozeimeh, Fahime [4 ]
Nahavandi, Saeid [1 ]
Sarrafzadegan, Nizal [5 ,9 ]
Acharya, U. Rajendra [6 ,7 ,8 ]
机构
[1] Deakin Univ, IISRI, Geelong, Vic, Australia
[2] Univ Quebec Montreal, Dept Informat, Montreal, PQ, Canada
[3] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan, Iran
[4] Mashhad Univ Med Sci, Fac Med, Mashhad, Razavi Khorasan, Iran
[5] Univ British Columbia, Fac Med, SPPH, Vancouver, BC, Canada
[6] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore, Singapore
[7] Singapore Univ Social Sci, Dept Biomed Engn, Sch Sci & Technol, Singapore, Singapore
[8] Univ Malaya, Dept Biomed Engn, Fac Engn, Kuala Lumpur, Malaysia
[9] Isfahan Univ Med Sci, Isfahan Cardiovasc Res Ctr, Cardiovasc Res Inst, Khorram Ave, Esfahan, Iran
关键词
CAD diagnosis; Machine learning; Data mining; Feature selection; ARTIFICIAL NEURAL-NETWORK; DATA MINING APPROACH; HEART-DISEASE; LOGISTIC-REGRESSION; DECISION-MAKING; EXPERT-SYSTEM; ECG SIGNALS; MYOCARDIAL-INFARCTION; AUTOMATED DIAGNOSIS; FEATURE-SELECTION;
D O I
10.1016/j.compbiomed.2019.103346
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and often leads to a heart attack. It annually causes millions of deaths and billions of dollars in financial losses worldwide. Angiography, which is invasive and risky, is the standard procedure for diagnosing CAD. Alternatively, machine learning (ML) techniques have been widely used in the literature as fast, affordable, and noninvasive approaches for CAD detection. The results that have been published on ML-based CAD diagnosis differ substantially in terms of the analyzed datasets, sample sizes, features, location of data collection, performance metrics, and applied ML techniques. Due to these fundamental differences, achievements in the literature cannot be generalized. This paper conducts a comprehensive and multifaceted review of all relevant studies that were published between 1992 and 2019 for ML-based CAD diagnosis. The impacts of various factors, such as dataset characteristics (geographical location, sample size, features, and the stenosis of each coronary artery) and applied ML techniques (feature selection, performance metrics, and method) are investigated in detail. Finally, the important challenges and shortcomings of ML-based CAD diagnosis are discussed.
引用
收藏
页数:14
相关论文
共 191 条
[1]  
Abdar M., 2017, Journal of Medical and Biological Engineering, P1, DOI DOI 10.1007/S40846-017-0360-Z
[2]  
Abdar M., 2015, Carpathian J. Electron. Comput. Eng, V8, P31
[3]  
Abdar M., 2018, Journal of AI and Data Mining, V6, P277, DOI 10.22044/JADM.2017.4673.1555
[4]   Performance analysis of classification algorithms on early detection of liver disease [J].
Abdar, Moloud ;
Zomorodi-Moghadam, Mariam ;
Das, Resul ;
Ting, I-Hsien .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 67 :239-251
[5]  
Abdar Moloud., 2015, International Journal of Electrical Computer Engineering (2088-8708), V5, DOI [10.11591/ijece.v5i6.pp1569-1576, DOI 10.11591/IJECE.V5I6.PP1569-1576]
[6]   Characterization of coronary artery pathological formations from OCT imaging using deep learning [J].
Abdolmanafi, Atefeh ;
Luc Duong ;
Dahdah, Nagib ;
Adib, Ibrahim Ragui ;
Cheriet, Farida .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (10) :4936-4960
[7]   Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease [J].
Abdulhay, Enas ;
Arunkumar, N. ;
Narasimhan, Kumaravelu ;
Vellaiappan, Elamaran ;
Venkatraman, V. .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 83 :366-373
[8]   Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images [J].
Acharya, J. Rajendra ;
Sree, S. Vinitha ;
Krishnan, M. Muthu Rama ;
Krishnananda, N. ;
Ranjan, Shetty ;
Umesh, Pai ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) :624-632
[9]   Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Tan, Ru San .
APPLIED INTELLIGENCE, 2019, 49 (01) :16-27
[10]   Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 415 :190-198