HEAT KERNEL BASED DECOMPOSITION OF SPACES OF DISTRIBUTIONS IN THE FRAMEWORK OF DIRICHLET SPACES

被引:0
作者
Kerkyacharian, Gerard [1 ]
Petrushev, Pencho [2 ]
机构
[1] Univ Paris Diderot, CNRS, UMR 7599, Lab Probabilites & Modeles Aleatoires, F-75013 Paris, France
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Heat kernel; functional calculus; frames; Besov spaces; Triebel-Lizorkin spaces; LOCALIZED POLYNOMIAL FRAMES; WEIGHTED TRIEBEL-LIZORKIN; BESOV-SPACES; HARDY-SPACES; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classical and nonclassical Besov and Triebel-Lizorkin spaces with complete range of indices are developed in the general setting of Dirichlet space with a doubling measure and local scale-invariant Poincare inequality. This leads to a heat kernel with small time Gaussian bounds and Holder continuity, which play a central role in this article. Frames with band limited elements of sub-exponential space localization are developed, and frame and heat kernel characterizations of Besov and Triebel-Lizorkin spaces are established. This theory, in particular, allows the development of Besov and Triebel-Lizorkin spaces and their frame and heat kernel characterization in the context of Lie groups, Riemannian manifolds, and other settings.
引用
收藏
页码:121 / 189
页数:69
相关论文
共 50 条
[31]   Molecular decomposition and Fourier multipliers for holomorphic Besov and Triebel-Lizorkin spaces [J].
Cleanthous, G. ;
Georgiadis, A. G. ;
Nielsen, M. .
MONATSHEFTE FUR MATHEMATIK, 2019, 188 (03) :467-493
[32]   Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type [J].
Peng Chen ;
Xuan Thinh Duong ;
Ji Li ;
Lesley A. Ward ;
Lixin Yan .
Mathematische Zeitschrift, 2016, 282 :1033-1065
[33]   Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type [J].
Chen, Peng ;
Xuan Thinh Duong ;
Li, Ji ;
Ward, Lesley A. ;
Yan, Lixin .
MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) :1033-1065
[34]   Heat kernel estimates on effective resistance metric spaces [J].
Hu Jiaxin Ji Yuan Wen Zhiying Department of Mathematical SciencesTsinghua UniversityBeijing China .
Progress in Natural Science, 2007, (07) :775-783
[35]   Heat Kernel on Homogeneous Bundles over Symmetric Spaces [J].
Ivan G. Avramidi .
Communications in Mathematical Physics, 2009, 288 :963-1006
[36]   Heat kernel on smooth metric measure spaces and applications [J].
Wu, Jia-Yong ;
Wu, Peng .
MATHEMATISCHE ANNALEN, 2016, 365 (1-2) :309-344
[37]   SPECTRUM AND HEAT KERNEL ASYMPTOTICS ON GENERAL LAAKSO SPACES [J].
Begue, Matthew ;
Devalve, Levi ;
Miller, David ;
Steinhurst, Benjamin .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2012, 20 (02) :149-162
[38]   Heat kernel estimates on effective resistance metric spaces [J].
Hu, Jiaxin ;
Yuan, Ji ;
Wen, Zhiying .
PROGRESS IN NATURAL SCIENCE, 2007, 17 (07) :775-783
[39]   Explicit formulas of the heat kernel on the quaternionic projective spaces [J].
Hafoud, Ali ;
Ghanmi, Allal .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2022, 13 (02) :1-11
[40]   Old and New Morrey Spaces with Heat Kernel Bounds [J].
Xuan Thinh Duong ;
Jie Xiao ;
Lixin Yan .
Journal of Fourier Analysis and Applications, 2007, 13 :87-111