HEAT KERNEL BASED DECOMPOSITION OF SPACES OF DISTRIBUTIONS IN THE FRAMEWORK OF DIRICHLET SPACES

被引:0
作者
Kerkyacharian, Gerard [1 ]
Petrushev, Pencho [2 ]
机构
[1] Univ Paris Diderot, CNRS, UMR 7599, Lab Probabilites & Modeles Aleatoires, F-75013 Paris, France
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Heat kernel; functional calculus; frames; Besov spaces; Triebel-Lizorkin spaces; LOCALIZED POLYNOMIAL FRAMES; WEIGHTED TRIEBEL-LIZORKIN; BESOV-SPACES; HARDY-SPACES; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classical and nonclassical Besov and Triebel-Lizorkin spaces with complete range of indices are developed in the general setting of Dirichlet space with a doubling measure and local scale-invariant Poincare inequality. This leads to a heat kernel with small time Gaussian bounds and Holder continuity, which play a central role in this article. Frames with band limited elements of sub-exponential space localization are developed, and frame and heat kernel characterizations of Besov and Triebel-Lizorkin spaces are established. This theory, in particular, allows the development of Besov and Triebel-Lizorkin spaces and their frame and heat kernel characterization in the context of Lie groups, Riemannian manifolds, and other settings.
引用
收藏
页码:121 / 189
页数:69
相关论文
共 50 条
[21]   HARDY SPACES ON METRIC MEASURE SPACES WITH GENERALIZED SUB-GAUSSIAN HEAT KERNEL ESTIMATES [J].
Chen, Li .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 104 (02) :162-194
[22]   The Davies method revisited for heat kernel upper bounds of regular Dirichlet forms on metric measure spaces [J].
Hu, Jiaxin ;
Li, Xuliang .
FORUM MATHEMATICUM, 2018, 30 (05) :1129-1155
[24]   Heat Kernel Asymptotics of Local Dirichlet Spaces as Co-Compact Covers of Finitely Generated Groups [J].
Melanie Pivarski .
Potential Analysis, 2012, 36 :429-453
[25]   Heat kernel and Lipschitz-Besov spaces [J].
Grigor'yan, Alexander ;
Liu, Liguang .
FORUM MATHEMATICUM, 2015, 27 (06) :3567-3613
[26]   Locality of the Heat Kernel on Metric Measure Spaces [J].
Post, Olaf ;
Rueckriemen, Ralf .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (03) :729-766
[27]   Locality of the Heat Kernel on Metric Measure Spaces [J].
Olaf Post ;
Ralf Rückriemen .
Complex Analysis and Operator Theory, 2018, 12 :729-766
[28]   Contractive inequalities between Dirichlet and Hardy spaces [J].
Llinares, Adrian .
REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (01) :389-398
[29]   Atomic and Molecular Decomposition of Homogeneous Spaces of Distributions Associated to Non-negative Self-Adjoint Operators [J].
A. G. Georgiadis ;
G. Kerkyacharian ;
G. Kyriazis ;
P. Petrushev .
Journal of Fourier Analysis and Applications, 2019, 25 :3259-3309
[30]   Heat-Semigroup-Based Besov Capacity on Dirichlet Spaces and Its Applications [J].
Xie, Xiangyun ;
Wang, Haihui ;
Liu, Yu .
MATHEMATICS, 2024, 12 (07)