Synthesis of porous UiO-66-NH2-based mixed matrix membranes with high stability, flux and separation selectivity for Ga(III)

被引:44
|
作者
Zhang, Mengmeng [1 ]
Sun, Qian [1 ]
Wang, Yuejiao [1 ]
Shan, Weijun [1 ]
Lou, Zhenning [1 ]
Xiong, Ying [1 ]
机构
[1] Liaoning Univ, Coll Chem, Key Lab Rare Scattered Elements Liaoning Prov, Shenyang 110036, Peoples R China
基金
中国国家自然科学基金;
关键词
UiO-66-NH2; Mixed matrix membranes; Gallium; Recovery; Separation; GRAPHENE OXIDE; NANOFIBROUS MEMBRANE; AQUEOUS-SOLUTIONS; GALLIUM-ARSENIDE; FACILE SYNTHESIS; THIN-FILMS; ADSORPTION; PERFORMANCE; REMOVAL; ADSORBENT;
D O I
10.1016/j.cej.2021.129748
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reported powdery adsorbents with poor adsorption efficiency and stability make it imperative to develop novel materials to extract gallium ions (Ga(III)) from effluents. Herein, UiO-66-NH2-based mixed matrix membranes (TPU/0.1THB/U6N-1.5 MMMs) via electrospinning is firstly reported for separation and recovery of Ga(III). TPU/0.1THB/U6N-1.5 MMMs efficiently overcomes multiple bottlenecks of powder UiO-66-NH2, including poor stability, reusability and adsorption capacity. Its maximum adsorption for Ga(III) is 96.18 mg.g(-1) at pH 10.0. It has superiority in selective adsorption of Ga(III) from Al(III), Cu(II), Zn(II), Co(II) coexistence solution. Adsorption capacity of TPU/0.1THB/U6N-1.5 for Ga(III) reaches more than 80% after 9 cycles. Specially, it still retains excellent mechanical strength, flexibility and structural integrity after 12 h filtration, or after 9 adsorption-desorption cycles, even soaked in 5 mol.L (-1) HCl for a week. TPU/0.1THB/U6N-1.5 MMMs also improves the problem of low water flux. TPU/0.1THB/U6N-1.5 with high MOFs loading possess high water flux of 382.2 L.m(-2) .h(-1) with a permance of 382.2 L.m(-2).h(-1).bar(-1) and rejection rates of 90% for Ga(III). The main adsorption mechanism of TPU/0.1THB/U6N-1.5 is based on the chelation between phenolic hydroxyl groups of MMMs and Ga(III) at pH 10.0. Overall, the as-prepared TPU/0.1THB/U6N-1.5 has potential for water treatment through the process of membrane adsorption.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] New Chemistry for Mixed Matrix Membranes: Growth of Continuous Multilayer UiO-66-NH2 on UiO-66-NH2-Based Polyacrylonitrile for Highly Efficient Separations
    Aghili, Fatemeh
    Ghoreyshi, Ali Asghar
    Rahimpour, Ahmad
    Van der Bruggen, Bart
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (16) : 7825 - 7838
  • [2] Pervaporation dehydration of acetic acid using NH2-UiO-66/PEI mixed matrix membranes
    Wang, Naixin
    Zhang, Guojun
    Wang, Lin
    Li, Jie
    An, Quanfu
    Ji, Shulan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 186 : 20 - 27
  • [3] A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance
    Jiang, Yunzhe
    Liu, Chuanyao
    Caro, Juergen
    Huang, Aisheng
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 274 : 203 - 211
  • [4] Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation
    Anjum, M. Waqas
    Vermoortele, Frederik
    Khan, Asim Laeeq
    Bueken, Bart
    De Vos, Dirk E.
    Vankelecom, Ivo F. J.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (45) : 25193 - 25201
  • [5] In-situ growth of UiO-66-NH2 in porous polymeric substrates at room temperature for fabrication of mixed matrix membranes with fast molecular separation performance
    Li, Zhiwen
    Zhang, Wentian
    Tao, Min
    Shen, Liguo
    Li, Renjie
    Zhang, Meijia
    Jiao, Yang
    Hong, Huachang
    Xu, Yanchao
    Lin, Hongjun
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [6] UiO-66-polyether block amide mixed matrix membranes for CO2 separation
    Shen, Jie
    Liu, Gongping
    Huang, Kang
    Li, Qianqian
    Guan, Kecheng
    Li, Yukai
    Jin, Wanqin
    JOURNAL OF MEMBRANE SCIENCE, 2016, 513 : 155 - 165
  • [7] Mixed-Matrix Composite Membranes Based on UiO-66-Derived MOFs for CO2 Separation
    Molavi, Hossein
    Shojaei, Akbar
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (09) : 9448 - 9461
  • [8] Preparation of UiO-66/DMBPTB and UiO-66-NH2/DMBPTB Nanocomposite Membranes with Enhanced CO2/CH4 Selectivity for Gas Separation
    Wang, Shaokang
    Xiang, Dongxiao
    Meng, Junquan
    Cao, Bing
    Zhang, Rui
    Li, Pei
    CHEMISTRYSELECT, 2020, 5 (45): : 14251 - 14260
  • [9] Polyethyleneimine NH2-UiO-66 nanofiller-based mixed matrix membranes for natural gas purification
    Cui, Yuchen
    Cui, Xiaolei
    Tosheva, Lubomira
    Wang, Chunzheng
    Chai, Yongming
    Kang, Zixi
    Gao, Qiang
    Wang, Kun
    Zhang, Zhihan
    Guo, Hailing
    Xia, Daohong
    Sun, Daofeng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 353
  • [10] Application of Polyvinyl Chloride- Halloysite Nanotubes/Uio66-NH2 Mixed Matrix Membranes in Separation of Sunflower Oil from Water
    Ghaedi, N.
    Nabian, N.
    Delavar, M.
    Amid, M.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2024, 37 (09): : 1736 - 1745