Three-dimensional Lorentz manifolds admitting a parallel null vector field

被引:57
作者
Chaichi, M [1 ]
García-Río, E
Vázquez-Abal, ME
机构
[1] Univ Tabriz, Dept Math, Tabriz, Iran
[2] Univ Santiago de Compostela, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 04期
关键词
D O I
10.1088/0305-4470/38/4/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Curvature properties of three-dimensional Lorentz manifolds admitting a parallel degenerate line field are examined. A complete characterization of those manifolds being locally symmetric or locally conformally flat is obtained. The results of this study show nice families of examples of such properties within the Lorentzian setting.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 11 条
[1]   Examples of curvature homogeneous Lorentz metrics [J].
Bueken, P ;
Vanhecke, L .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (05) :L93-L96
[2]   Three-dimensional Lorentz metrics and curvature homogeneity of order one [J].
Bueken, P ;
Djoric, M .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (01) :85-103
[3]   Conformally flat 3-manifolds with constant scalar curvature [J].
Cheng, QM ;
Ishikawa, S ;
Shiohama, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1999, 51 (01) :209-226
[4]   KILLING PAIRS CONSTRUCTED FROM A RECURRENT VECTOR FIELD [J].
COLLINSON, CD ;
VAZ, EGLR .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (07) :751-759
[5]   Two special metrics with R14-type holonomy [J].
Ghanam, R ;
Thompson, G .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (11) :2007-2014
[6]   Complete curvature homogeneous pseudo-Riemannian manifolds [J].
Gilkey, P ;
Nikcevic, S .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :3755-3770
[7]  
Gray A., 1978, Geom. Dedicta, V7, P259
[8]   NONUNIQUENESS OF THE METRIC IN LORENTZIAN MANIFOLDS [J].
MARTIN, GK ;
THOMPSON, G .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 158 (01) :177-187
[9]   Metrics compatible with a symmetric connection in dimension three [J].
Thompson, G .
JOURNAL OF GEOMETRY AND PHYSICS, 1996, 19 (01) :1-17
[10]  
Walker A. G., 1950, PHYS REV LETT, V1, P147