A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data

被引:14
作者
Chen, Shuo [1 ]
Bowman, F. DuBois [2 ]
Mayberg, Helen S. [3 ]
机构
[1] Univ Maryland, Dept Epidemiol & Biostat, College Pk, MD 20742 USA
[2] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[3] Emory Univ, Sch Med, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
Bayesian hierarchical model; Brain imaging; Functional connectivity; MCMC; Resting-state fMRI; STATE FUNCTIONAL CONNECTIVITY; DEPRESSION; NETWORKS; MRI; TARGETS; CORTEX;
D O I
10.1111/biom.12433
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a novel Bayesian hierarchical model for brain imaging data that unifies voxel-level (the most localized unit of measure) and region-level brain connectivity analyses, and yields population-level inferences. Functional connectivity generally refers to associations in brain activity between distinct locations. The first level of our model summarizes brain connectivity for cross-region voxel pairs using a two-component mixture model consisting of connected and nonconnected voxels. We use the proportion of connected voxel pairs to define a new measure of connectivity strength, which reflects the breadth of between-region connectivity. Furthermore, we evaluate the impact of clinical covariates on connectivity between region-pairs at a population level. We perform parameter estimation using Markov chain Monte Carlo (MCMC) techniques, which can be executed quickly relative to the number of model parameters. We apply our method to resting-state functional magnetic resonance imaging (fMRI) data from 32 subjects with major depression and simulated data to demonstrate the properties of our method.
引用
收藏
页码:596 / 605
页数:10
相关论文
共 38 条
[21]  
Maruish M.E., 1999, USE PSYCHOL TESTING, V2nd
[22]  
Mayberg H. S., 2005, NEURON, V45, P51
[23]  
Muller P., 2006, P VAL ISBA 8 WORLD M
[24]   A Bayesian approach to determining connectivity of the human brain [J].
Patel, RS ;
Bowman, FD ;
Rilling, JK .
HUMAN BRAIN MAPPING, 2006, 27 (03) :267-276
[25]  
Schutte N.S., 1995, SOURCEBOOK ADULT ASS
[26]   Limbic-frontal circuitry in major depression: a path modeling metanalysis [J].
Seminowicz, DA ;
Mayberg, HS ;
McIntosh, AR ;
Goldapple, K ;
Kennedy, S ;
Segal, Z ;
Rafi-Tari, S .
NEUROIMAGE, 2004, 22 (01) :409-418
[27]   Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain [J].
Simpson, Sean L. ;
Bowman, F. DuBois ;
Laurienti, Paul J. .
STATISTICS SURVEYS, 2013, 7 :1-36
[28]  
Sporns O, 2016, Networks of the Brain
[29]   Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data [J].
Sun, FT ;
Miller, LM ;
D'Esposito, M .
NEUROIMAGE, 2004, 21 (02) :647-658
[30]   Functional Interactions as Big Data in the Human Brain [J].
Turk-Browne, Nicholas B. .
SCIENCE, 2013, 342 (6158) :580-584