A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data

被引:14
作者
Chen, Shuo [1 ]
Bowman, F. DuBois [2 ]
Mayberg, Helen S. [3 ]
机构
[1] Univ Maryland, Dept Epidemiol & Biostat, College Pk, MD 20742 USA
[2] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[3] Emory Univ, Sch Med, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
Bayesian hierarchical model; Brain imaging; Functional connectivity; MCMC; Resting-state fMRI; STATE FUNCTIONAL CONNECTIVITY; DEPRESSION; NETWORKS; MRI; TARGETS; CORTEX;
D O I
10.1111/biom.12433
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a novel Bayesian hierarchical model for brain imaging data that unifies voxel-level (the most localized unit of measure) and region-level brain connectivity analyses, and yields population-level inferences. Functional connectivity generally refers to associations in brain activity between distinct locations. The first level of our model summarizes brain connectivity for cross-region voxel pairs using a two-component mixture model consisting of connected and nonconnected voxels. We use the proportion of connected voxel pairs to define a new measure of connectivity strength, which reflects the breadth of between-region connectivity. Furthermore, we evaluate the impact of clinical covariates on connectivity between region-pairs at a population level. We perform parameter estimation using Markov chain Monte Carlo (MCMC) techniques, which can be executed quickly relative to the number of model parameters. We apply our method to resting-state functional magnetic resonance imaging (fMRI) data from 32 subjects with major depression and simulated data to demonstrate the properties of our method.
引用
收藏
页码:596 / 605
页数:10
相关论文
共 38 条
[11]   Large-scale simultaneous hypothesis testing: The choice of a null hypothesis [J].
Efron, B .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) :96-104
[12]   Efficacy of Transcranial Magnetic Stimulation Targets for Depression Is Related to Intrinsic Functional Connectivity with the Subgenual Cingulate [J].
Fox, Michael D. ;
Buckner, Randy L. ;
White, Matthew P. ;
Greicius, Michael D. ;
Pascual-Leone, Alvaro .
BIOLOGICAL PSYCHIATRY, 2012, 72 (07) :595-603
[13]   The Global Signal and Observed Anticorrelated Resting State Brain Networks [J].
Fox, Michael D. ;
Zhang, Dongyang ;
Snyder, Abraham Z. ;
Raichle, Marcus E. .
JOURNAL OF NEUROPHYSIOLOGY, 2009, 101 (06) :3270-3283
[14]  
GAREY LJ, 1994, BRODMANS LOCALISATIO
[15]   VARIABLE SELECTION VIA GIBBS SAMPLING [J].
GEORGE, EI ;
MCCULLOCH, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :881-889
[16]   Functional connectivity in the resting brain: A network analysis of the default mode hypothesis [J].
Greicius, MD ;
Krasnow, B ;
Reiss, AL ;
Menon, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :253-258
[17]  
Greicius M, 2008, CURR OPIN NEUROL, V21, P424, DOI 10.1097/WCO.0b013e328306f2c5
[18]   Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus [J].
Greicius, Michael D. ;
Flores, Benjamin H. ;
Menon, Vinod ;
Glover, Gary H. ;
Solvason, Hugh B. ;
Kenna, Heather ;
Reiss, Allan L. ;
Schatzberg, Alan F. .
BIOLOGICAL PSYCHIATRY, 2007, 62 (05) :429-437
[19]   A Tractography Analysis of Two Deep Brain Stimulation White Matter Targets for Depression [J].
Gutman, David A. ;
Holtzheimer, Paul E. ;
Behrens, Timothy E. J. ;
Johansen-Berg, Heidi ;
Mayberg, Helen S. .
BIOLOGICAL PSYCHIATRY, 2009, 65 (04) :276-282
[20]  
Jirsa K., 2007, HDB BRAIN CONNECTIVI