A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data

被引:14
作者
Chen, Shuo [1 ]
Bowman, F. DuBois [2 ]
Mayberg, Helen S. [3 ]
机构
[1] Univ Maryland, Dept Epidemiol & Biostat, College Pk, MD 20742 USA
[2] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[3] Emory Univ, Sch Med, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
Bayesian hierarchical model; Brain imaging; Functional connectivity; MCMC; Resting-state fMRI; STATE FUNCTIONAL CONNECTIVITY; DEPRESSION; NETWORKS; MRI; TARGETS; CORTEX;
D O I
10.1111/biom.12433
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a novel Bayesian hierarchical model for brain imaging data that unifies voxel-level (the most localized unit of measure) and region-level brain connectivity analyses, and yields population-level inferences. Functional connectivity generally refers to associations in brain activity between distinct locations. The first level of our model summarizes brain connectivity for cross-region voxel pairs using a two-component mixture model consisting of connected and nonconnected voxels. We use the proportion of connected voxel pairs to define a new measure of connectivity strength, which reflects the breadth of between-region connectivity. Furthermore, we evaluate the impact of clinical covariates on connectivity between region-pairs at a population level. We perform parameter estimation using Markov chain Monte Carlo (MCMC) techniques, which can be executed quickly relative to the number of model parameters. We apply our method to resting-state functional magnetic resonance imaging (fMRI) data from 32 subjects with major depression and simulated data to demonstrate the properties of our method.
引用
收藏
页码:596 / 605
页数:10
相关论文
共 38 条
[1]   A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs [J].
Achard, S ;
Salvador, R ;
Whitcher, B ;
Suckling, J ;
Bullmore, ET .
JOURNAL OF NEUROSCIENCE, 2006, 26 (01) :63-72
[2]   A Bayesian hierarchical framework for spatial modeling of fMRI data [J].
Bowman, F. DuBois ;
Caffo, Brian ;
Bassett, Susan Spear ;
Kilts, Clinton .
NEUROIMAGE, 2008, 39 (01) :146-156
[3]   Brain Imaging Analysis [J].
Bowman, F. DuBois .
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 :61-85
[4]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[5]   A method for making group inferences from functional MRI data using independent component analysis [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 14 (03) :140-151
[6]   POISSON APPROXIMATION FOR DEPENDENT TRIALS [J].
CHEN, LHY .
ANNALS OF PROBABILITY, 1975, 3 (03) :534-545
[7]  
Cordes D, 2001, AM J NEURORADIOL, V22, P1326
[8]   Modeling the Spatial and Temporal Dependence in fMRI Data [J].
Derado, Gordana ;
Bowman, F. DuBois ;
Kilts, Clinton D. .
BIOMETRICS, 2010, 66 (03) :949-957
[9]   A Bayesian mixture model for differential gene expression [J].
Do, KA ;
Müller, P ;
Tang, F .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2005, 54 :627-644
[10]   Predictors of remission in depression to individual and combined treatments (PReDICT): study protocol for a randomized controlled trial [J].
Dunlop, Boadie W. ;
Binder, Elisabeth B. ;
Cubells, Joseph F. ;
Goodman, Mark M. ;
Kelley, Mary E. ;
Kinkead, Becky ;
Kutner, Michael ;
Nemeroff, Charles B. ;
Newport, D. Jeffrey ;
Owens, Michael J. ;
Pace, Thaddeus W. W. ;
Ritchie, James C. ;
Rivera, Vivianne Aponte ;
Westen, Drew ;
Craighead, W. Edward ;
Mayberg, Helen S. .
TRIALS, 2012, 13