Magnetic-Phase Dependence of the Spin Carrier Mean Free Path in Graphene Nanoribbons

被引:10
作者
Li, Jing [1 ,2 ]
Niquet, Yann-Michel [1 ,2 ]
Delerue, Christophe [3 ]
机构
[1] Univ Grenoble Alpes, INAC MEM, L Sim, Grenoble, France
[2] CEA, INAC MEM, L Sim, F-38000 Grenoble, France
[3] IEMN, UMR CNRS 8520, F-59652 Villeneuve Dascq, France
关键词
EPITAXIAL GRAPHENE; MAGNETORESISTANCE; TRANSPORT; EDGES;
D O I
10.1103/PhysRevLett.116.236602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show theoretically that the intrinsic (phonon-limited) carrier mobility in graphene nanoribbons is considerably influenced by the presence of spin-polarized edge states. When the coupling between opposite edges switches from antiferromagnetic to ferromagnetic with increasing carrier density, the current becomes spin polarized and the mean free path rises from 10 nm to micrometers. In the ferromagnetic state, the current flows through one majority-spin channel which is ballistic over micrometers and several minority-spin channels with mean free paths as low as 1 nm. These features predicted in technology-relevant conditions could be nicely exploited in spintronic devices.
引用
收藏
页数:5
相关论文
共 30 条
  • [1] Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/nnano.2010.154, 10.1038/NNANO.2010.154]
  • [2] Exceptional ballistic transport in epitaxial graphene nanoribbons
    Baringhaus, Jens
    Ruan, Ming
    Edler, Frederik
    Tejeda, Antonio
    Sicot, Muriel
    Taleb-Ibrahimi, Amina
    Li, An-Ping
    Jiang, Zhigang
    Conrad, Edward H.
    Berger, Claire
    Tegenkamp, Christoph
    de Heer, Walt A.
    [J]. NATURE, 2014, 506 (7488) : 349 - 354
  • [3] Temperature-dependent transport in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Hone, J.
    Stormer, H. L.
    Kim, P.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [4] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [5] Graphene nano-ribbon electronics
    Chen, Zhihong
    Lin, Yu-Ming
    Rooks, Michael J.
    Avouris, Phaedon
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) : 228 - 232
  • [6] Dlubak B, 2012, NAT PHYS, V8, P557, DOI [10.1038/NPHYS2331, 10.1038/nphys2331]
  • [7] Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities
    Efetov, Dmitri K.
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (25)
  • [8] Electron Transport in Disordered Graphene Nanoribbons
    Han, Melinda Y.
    Brant, Juliana C.
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (05)
  • [9] Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates
    Hwang, Wan Sik
    Zhao, Pei
    Tahy, Kristof
    Nyakiti, Luke O.
    Wheeler, Virginia D.
    Myers-Ward, Rachael L.
    Eddy, Charles R., Jr.
    Gaskill, D. Kurt
    Robinson, Joshua A.
    Haensch, Wilfried
    Xing, Huili
    Seabaugh, Alan
    Jena, Debdeep
    [J]. APL MATERIALS, 2015, 3 (01):
  • [10] Jiao LY, 2010, NAT NANOTECHNOL, V5, P321, DOI [10.1038/nnano.2010.54, 10.1038/NNANO.2010.54]