A multidimensional Birkhoff theorem for time-dependent Tonelli Hamiltonians

被引:0
作者
Arnaud, Marie-Claude [1 ]
Venturelli, Andrea [1 ]
机构
[1] Avignon Univ, Lab Math Avignon EA 2151, F-84018 Avignon, France
关键词
GENERATING-FUNCTIONS; GEOMETRY; SYSTEMS; INTERSECTIONS;
D O I
10.1007/s00526-017-1210-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a closed and connected manifold, H : T*M x R/Z -> R a Tonelli 1-periodic Hamiltonian and L subset of T * M a Lagrangian submanifold Hamiltonianly isotopic to the zero section. We prove that if L is invariant by the time- one map of H, then L is a graph over M. An interesting consequence in the autonomous case is that in this case, L is invariant by all the time t maps of the Hamiltonian flow of H.
引用
收藏
页数:27
相关论文
共 50 条
[31]   Time-dependent coupled harmonic oscillators [J].
Macedo, D. X. ;
Guedes, I. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (05)
[32]   Time-dependent semiclassics for ultracold bosons [J].
Simon, Lena ;
Strunz, Walter T. .
PHYSICAL REVIEW A, 2014, 89 (05)
[33]   Toward Time-Dependent Robustness Metrics [J].
Du, Xiaoping .
JOURNAL OF MECHANICAL DESIGN, 2012, 134 (01)
[34]   Shortcuts to adiabaticity in a time-dependent box [J].
del Campo, A. ;
Boshier, M. G. .
SCIENTIFIC REPORTS, 2012, 2
[35]   The time-dependent harmonic oscillator revisited [J].
Fiore, Gaetano .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (05)
[36]   Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem [J].
Pribram-Jones, Aurora ;
Grabowski, Paul E. ;
Burke, Kieron .
PHYSICAL REVIEW LETTERS, 2016, 116 (23)
[37]   Time-dependent density functional theory on a lattice [J].
Farzanehpour, M. ;
Tokatly, I. V. .
PHYSICAL REVIEW B, 2012, 86 (12)
[38]   ROBUSTNESS METRICS FOR TIME-DEPENDENT QUALITY CHARACTERISTICS [J].
Du, Xiaoping .
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 5, PTS A AND B, 2012, :1151-1159
[39]   Noncommutative quantum mechanics in a time-dependent background [J].
Dey, Sanjib ;
Fring, Andreas .
PHYSICAL REVIEW D, 2014, 90 (08)
[40]   Viscous effects in time-dependent planar reconnection [J].
Armstrong, C. K. ;
Craig, I. J. D. ;
Litvinenko, Y. E. .
ASTRONOMY & ASTROPHYSICS, 2011, 534