HYPERSPECTRAL BAND SELECTION FROM THE SPECTRAL SIMILARITY PERSPECTIVE

被引:0
作者
Li, Shijin [1 ]
Zhu, Yuelong [1 ]
Wan, Dingsheng [1 ]
Feng, Jun [1 ]
机构
[1] Hohai Univ, Sch Comp & Informat, Nanjing 210098, Jiangsu, Peoples R China
来源
2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2013年
关键词
Hyperspectral image; band selection; shape similarity; search; CLASSIFICATION; ALGORITHM; SYSTEM; IMAGES;
D O I
10.1109/IGARSS.2013.6721179
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new technique for hyperspectral band selection from the spectral similarity perspective. Through a newly defined measure for band subset discriminativeness, class-specific important bands are retained which can preserve the spectral similarity of the samples from the same class and narrow down candidate band subset for the following search procedure. Then optimal search is performed in the aggregated band subset from all classes. Experiments on the Indian Pine benchmark data set have proved the efficiency and effectiveness of the proposed method.
引用
收藏
页码:410 / 413
页数:4
相关论文
共 50 条
  • [31] Selection of the best hybrid spectral similarity measure for characterising marine oil spills from multi-platform hyperspectral datasets
    Deepthi, Deepa
    Sankar, Deepa
    Thomas, Tessamma
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2023, 26 (06) : 715 - 731
  • [32] Effects of band selection on the hyperspectral classification
    Andreou, Charoula
    Karathanassi, Vassilia
    Diamantopoulou, Georgia
    IMAGING SPECTROMETRY XVIII, 2013, 8870
  • [33] SIMILARITY-BASED HYPERSPECTRAL BAND SELECTION USING DEEP REINFORCEMENT LEARNING
    Bao, Dong
    Tuxworth, Gervase
    Zhou, Jun
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [34] Band selection for spectral signature based target detection in hyperspectral data
    Greco, M.
    Acito, N.
    Corsini, G.
    Diani, M.
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 3899 - 3902
  • [35] Correntropy-Based Sparse Spectral Clustering for Hyperspectral Band Selection
    Sun, Weiwei
    Peng, Jiangtao
    Yang, Gang
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 484 - 488
  • [36] ROBUST MULTI-FEATURE SPECTRAL CLUSTEIRNG FOR HYPERSPECTRAL BAND SELECTION
    Sun, Weiwei
    Yang, Gang
    Li, Jialin
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3800 - 3803
  • [37] SPECTRAL BAND SELECTION FOR URBAN MATERIAL CLASSIFICATION USING HYPERSPECTRAL LIBRARIES
    Le Bris, A.
    Chehata, N.
    Briottet, X.
    Paparoditis, N.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07): : 33 - 40
  • [38] Robust multi-feature spectral clustering for hyperspectral band selection
    Sun W.
    Yang G.
    Peng J.
    Meng X.
    National Remote Sensing Bulletin, 2022, 26 (02): : 397 - 405
  • [39] Unsupervised band selection of medical hyperspectral images guided by data gravitation and weak correlation
    Zhang, Chenglong
    Zhang, Zhimin
    Yu, Dexin
    Cheng, Qiyuan
    Shan, Shihao
    Li, Mengjiao
    Mou, Lichao
    Yang, Xiaoli
    Ma, Xiaopeng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 240
  • [40] Band selection of hyperspectral image based on optimal linear prediction of principal components in subspace
    Wu Yi-Quan
    Zhou Yang
    Sheng Dong-Hui
    Ye Xiao-Lai
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2018, 37 (01) : 119 - 128