WEIGHTED LEAST-SQUARES ESTIMATION FOR THE SUBCRITICAL HESTON PROCESS

被引:0
|
作者
de Chaumaray, M. du Roy [1 ,2 ]
机构
[1] Inst Math Bordeaux, Talence, France
[2] ENSAI, Campus Ker Lann,Rue Blaise Pascal,BP 37203, F-35172 Bruz, France
关键词
Squared radial Ornstein-Uhlenbeck process; Heston process; parameter estimation; weighted least-squares estimate; consistency; asymptotic normality; ORNSTEIN-UHLENBECK PROCESS; STOCHASTIC VOLATILITY; TERM STRUCTURE; LARGE DEVIATIONS; ROOT DIFFUSIONS; OPTIONS; MODELS; SMILE;
D O I
10.1017/jpr.2018.34
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We simultaneously estimate the four parameters of a subcritical Heston process. We do not restrict ourselves to the case where the stochastic volatility process never reaches zero. In order to avoid the use of unmanageable stopping times and a natural but intractable estimator, we use a weighted least-squares estimator. We establish strong consistency and asymptotic normality for this estimator. Numerical simulations are also provided, illustrating the favorable performance of our estimation procedure.
引用
收藏
页码:543 / 558
页数:16
相关论文
共 50 条