We simultaneously estimate the four parameters of a subcritical Heston process. We do not restrict ourselves to the case where the stochastic volatility process never reaches zero. In order to avoid the use of unmanageable stopping times and a natural but intractable estimator, we use a weighted least-squares estimator. We establish strong consistency and asymptotic normality for this estimator. Numerical simulations are also provided, illustrating the favorable performance of our estimation procedure.
机构:
Inria Grenoble Rhone Alpes, F-38334 Montbonnot St Martin, St Ismier, France
Lab Jean Kuntzmann, F-38334 Montbonnot St Martin, St Ismier, FranceInria Grenoble Rhone Alpes, F-38334 Montbonnot St Martin, St Ismier, France
Mazo, Gildas
Girard, Stephane
论文数: 0引用数: 0
h-index: 0
机构:
Inria Grenoble Rhone Alpes, F-38334 Montbonnot St Martin, St Ismier, France
Lab Jean Kuntzmann, F-38334 Montbonnot St Martin, St Ismier, FranceInria Grenoble Rhone Alpes, F-38334 Montbonnot St Martin, St Ismier, France
Girard, Stephane
Forbes, Florence
论文数: 0引用数: 0
h-index: 0
机构:
Inria Grenoble Rhone Alpes, F-38334 Montbonnot St Martin, St Ismier, France
Lab Jean Kuntzmann, F-38334 Montbonnot St Martin, St Ismier, FranceInria Grenoble Rhone Alpes, F-38334 Montbonnot St Martin, St Ismier, France