A comparison of five epidemiological models for transmission of SARS-CoV-2 in India
被引:25
|
作者:
Purkayastha, Soumik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Purkayastha, Soumik
[1
]
Bhattacharyya, Rupam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Bhattacharyya, Rupam
[1
]
Bhaduri, Ritwik
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Kolkata 700108, W Bengal, IndiaUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Bhaduri, Ritwik
[2
]
Kundu, Ritoban
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Kolkata 700108, W Bengal, IndiaUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Kundu, Ritoban
[2
]
Gu, Xuelin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Univ Michigan, Ctr Precis Hlth Data Sci, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Gu, Xuelin
[1
,3
]
Salvatore, Maxwell
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Univ Michigan, Ctr Precis Hlth Data Sci, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Salvatore, Maxwell
[1
,3
,4
]
Ray, Debashree
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD 21205 USA
Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USAUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Ray, Debashree
[5
,6
]
Mishra, Swapnil
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Sch Publ Hlth, London W2 1PG, EnglandUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Mishra, Swapnil
[7
]
Mukherjee, Bhramar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Univ Michigan, Ctr Precis Hlth Data Sci, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Mukherjee, Bhramar
[1
,3
,4
]
机构:
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Indian Stat Inst, Kolkata 700108, W Bengal, India
[3] Univ Michigan, Ctr Precis Hlth Data Sci, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USA
Compartmental models;
Low and middle income countries;
Prediction uncertainty;
Statistical models;
COVID-19;
D O I:
10.1186/s12879-021-06077-9
中图分类号:
R51 [传染病];
学科分类号:
100401 ;
摘要:
Background Many popular disease transmission models have helped nations respond to the COVID-19 pandemic by informing decisions about pandemic planning, resource allocation, implementation of social distancing measures, lockdowns, and other non-pharmaceutical interventions. We study how five epidemiological models forecast and assess the course of the pandemic in India: a baseline curve-fitting model, an extended SIR (eSIR) model, two extended SEIR (SAPHIRE and SEIR-fansy) models, and a semi-mechanistic Bayesian hierarchical model (ICM). Methods Using COVID-19 case-recovery-death count data reported in India from March 15 to October 15 to train the models, we generate predictions from each of the five models from October 16 to December 31. To compare prediction accuracy with respect to reported cumulative and active case counts and reported cumulative death counts, we compute the symmetric mean absolute prediction error (SMAPE) for each of the five models. For reported cumulative cases and deaths, we compute Pearson's and Lin's correlation coefficients to investigate how well the projected and observed reported counts agree. We also present underreporting factors when available, and comment on uncertainty of projections from each model. Results For active case counts, SMAPE values are 35.14% (SEIR-fansy) and 37.96% (eSIR). For cumulative case counts, SMAPE values are 6.89% (baseline), 6.59% (eSIR), 2.25% (SAPHIRE) and 2.29% (SEIR-fansy). For cumulative death counts, the SMAPE values are 4.74% (SEIR-fansy), 8.94% (eSIR) and 0.77% (ICM). Three models (SAPHIRE, SEIR-fansy and ICM) return total (sum of reported and unreported) cumulative case counts as well. We compute underreporting factors as of October 31 and note that for cumulative cases, the SEIR-fansy model yields an underreporting factor of 7.25 and ICM model yields 4.54 for the same quantity. For total (sum of reported and unreported) cumulative deaths the SEIR-fansy model reports an underreporting factor of 2.97. On October 31, we observe 8.18 million cumulative reported cases, while the projections (in millions) from the baseline model are 8.71 (95% credible interval: 8.63-8.80), while eSIR yields 8.35 (7.19-9.60), SAPHIRE returns 8.17 (7.90-8.52) and SEIR-fansy projects 8.51 (8.18-8.85) million cases. Cumulative case projections from the eSIR model have the highest uncertainty in terms of width of 95% credible intervals, followed by those from SAPHIRE, the baseline model and finally SEIR-fansy. Conclusions In this comparative paper, we describe five different models used to study the transmission dynamics of the SARS-Cov-2 virus in India. While simulation studies are the only gold standard way to compare the accuracy of the models, here we were uniquely poised to compare the projected case-counts against observed data on a test period. The largest variability across models is observed in predicting the "total" number of infections including reported and unreported cases (on which we have no validation data). The degree of under-reporting has been a major concern in India and is characterized in this report. Overall, the SEIR-fansy model appeared to be a good choice with publicly available R-package and desired flexibility plus accuracy.
机构:
Indian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, IndiaIndian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, India
Munivenkatappa, Ashok
Sahay, Rima R.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Council Med Res Natl Inst Virol, Pune 411021, Maharashtra, IndiaIndian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, India
Sahay, Rima R.
Deshpande, Gururaj R.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Council Med Res Natl Inst Virol, Pune 411021, Maharashtra, IndiaIndian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, India
Deshpande, Gururaj R.
Patil, Deepak Y.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Council Med Res Natl Inst Virol, Pune 411021, Maharashtra, IndiaIndian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, India
Patil, Deepak Y.
Shete, Anita M.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Council Med Res Natl Inst Virol, Pune 411021, Maharashtra, IndiaIndian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, India
Shete, Anita M.
Sapkal, Gajanan N.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Council Med Res Natl Inst Virol, Pune 411021, Maharashtra, IndiaIndian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, India
Sapkal, Gajanan N.
Kumar, Ravish
论文数: 0引用数: 0
h-index: 0
机构:
Employees State Insurance Corp Med Coll & Hosp, Gulbarga 585106, Karnataka, IndiaIndian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, India
Kumar, Ravish
Narayana, Marappa
论文数: 0引用数: 0
h-index: 0
机构:
Employees State Insurance Corp Med Coll & Hosp, Gulbarga 585106, Karnataka, IndiaIndian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, India
Narayana, Marappa
Yadav, Pragya D.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Council Med Res Natl Inst Virol, Pune 411021, Maharashtra, IndiaIndian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, India
Yadav, Pragya D.
Shettar, Vijay
论文数: 0引用数: 0
h-index: 0
机构:
Employees State Insurance Corp Med Coll & Hosp, Gulbarga 585106, Karnataka, IndiaIndian Council Med Res Natl Inst Virol, Bangalore Unit, Bangalore 560029, Karnataka, India
机构:
NIH, Div Int Epidemiol & Populat Studies, Fogarty Int Ctr, Bldg 10, Bethesda, MD 20892 USANIH, Div Int Epidemiol & Populat Studies, Fogarty Int Ctr, Bldg 10, Bethesda, MD 20892 USA
Sun, Kaiyuan
Viboud, Cecile
论文数: 0引用数: 0
h-index: 0
机构:
NIH, Div Int Epidemiol & Populat Studies, Fogarty Int Ctr, Bldg 10, Bethesda, MD 20892 USANIH, Div Int Epidemiol & Populat Studies, Fogarty Int Ctr, Bldg 10, Bethesda, MD 20892 USA
机构:
Schepens Eye Res Inst, Grousbeck Gene Therapy Ctr, Boston, MA USA
Massachusetts Eye & Ear Infirm, Boston, MA USA
Harvard Univ, Div Med Sci, Boston, MA USASchepens Eye Res Inst, Grousbeck Gene Therapy Ctr, Boston, MA USA
Maciorowski, Dawid
Sharma, Divakar
论文数: 0引用数: 0
h-index: 0
机构:
Hericure Healthcare Pvt Ltd, Pune, India
Maulana Azad Med Coll, Dept Microbiol, New Delhi 110002, IndiaSchepens Eye Res Inst, Grousbeck Gene Therapy Ctr, Boston, MA USA
Sharma, Divakar
Kunamneni, Adinarayana
论文数: 0引用数: 0
h-index: 0
机构:
Mayo Clin, Dept Internal Med, Div Infect Dis, Jacksonville, FL 32224 USASchepens Eye Res Inst, Grousbeck Gene Therapy Ctr, Boston, MA USA