3D axial-attention for lung nodule classification

被引:23
作者
Al-Shabi, Mundher [1 ]
Shak, Kelvin [1 ]
Tan, Maxine [1 ,2 ]
机构
[1] Monash Univ Malaysia, Sch Engn, Elect & Comp Syst Engn Discipline, Bandar Sunway 47500, Selangor, Malaysia
[2] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA
关键词
Self-attention; Non-local; Lung nodules; Cancer; Computed tomography; NETWORKS;
D O I
10.1007/s11548-021-02415-z
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose In recent years, Non-Local-based methods have been successfully applied to lung nodule classification. However, these methods offer 2D attention or limited 3D attention to low-resolution feature maps. Moreover, they still depend on a convenient local filter such as convolution as full 3D attention is expensive to compute and requires a big dataset, which might not be available. Methods We propose to use 3D Axial-Attention, which requires a fraction of the computing power of a regular Non-Local network (i.e., self-attention). Unlike a regular Non-Local network, the 3D Axial-Attention network applies the attention operation to each axis separately. Additionally, we solve the invariant position problem of the Non-Local network by proposing to add 3D positional encoding to shared embeddings. Results We validated the proposed method on 442 benign nodules and 406 malignant nodules, extracted from the public LIDC-IDRI dataset by following a rigorous experimental setup using only nodules annotated by at least three radiologists. Our results show that the 3D Axial-Attention model achieves state-of-the-art performance on all evaluation metrics, including AUC and Accuracy. Conclusions The proposed model provides full 3D attention, whereby every element (i.e., pixel) in the 3D volume space attends to every other element in the nodule effectively. Thus, the 3D Axial-Attention network can be used in all layers without the need for local filters. The experimental results show the importance of full 3D attention for classifying lung nodules.
引用
收藏
页码:1319 / 1324
页数:6
相关论文
共 19 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]  
Al-Shabi M., 2020, ARXIV201015417
[3]   Gated-Dilated Networks for Lung Nodule Classification in CT Scans [J].
Al-Shabi, Mundher ;
Lee, Hwee Kuan ;
Tan, Maxine .
IEEE ACCESS, 2019, 7 :178827-178838
[4]   Lung nodule classification using deep Local-Global networks [J].
Al-Shabi, Mundher ;
Lan, Boon Leong ;
Chan, Wai Yee ;
Ng, Kwan-Hoong ;
Tan, Maxine .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (10) :1815-1819
[5]  
American Cancer Society, 2020, Cancer facts & figures, DOI [10.1097/01.NNR.0000289503.22414.79, DOI 10.1097/01.NNR.0000289503.22414.79, DOI 10.1080/15398285.2012.701177]
[6]  
[Anonymous], 2015, ACS SYM SER
[7]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[8]  
Ba J.L., 2016, stat, VVolume 29, P3617, DOI 10.48550/arXiv.1607.06450
[9]  
Glorot Xavier, 2010, JMLR WORKSHOP C P, P249, DOI DOI 10.1109/LGRS.2016.2565705
[10]  
Ho Jonathan, 2019, Axial attention in multidimensional transformers