T-Periodic solutions and a priori bounds

被引:6
作者
Raffoul, YN [1 ]
机构
[1] Univ Dayton, Dept Math, Dayton, OH 45469 USA
关键词
a priori bound; periodic solutions; Schaefer's fixed-point theorem;
D O I
10.1016/S0895-7177(00)00161-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using Schaefer's fixed-point theorem, enabling us to show that if there is an a prion: bound on all possible T-periodic solutions of a Volterra-type difference equation, then there is a T-periodic solution. The a priori bound is established by means of a Lyapunov functional on which no bound is required. Thus, in addition to the periodic solution, the equation may have both bounded and unbounded solutions. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 6 条
[1]  
[Anonymous], 1980, FIXED POINT THEOREMS
[2]   LIAPUNOV FUNCTIONALS OF CONVOLUTION TYPE [J].
BURTON, TA ;
HUANG, Q ;
MAHFOUD, WE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 106 (01) :249-272
[3]   PERIODIC-SOLUTIONS OF LINEAR INTEGRODIFFERENTIAL EQUATIONS [J].
BURTON, TA ;
ELOE, PW ;
ISLAM, MN .
MATHEMATISCHE NACHRICHTEN, 1990, 147 :175-184
[4]  
BURTON TA, 1983, VOLTERRA INTEGRAL DI
[5]   PERIODICITY AND STABILITY OF LINEAR VOLTERRA DIFFERENCE-SYSTEMS [J].
ELAYDI, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 181 (02) :483-492
[6]  
SCHAEFER H, 1955, MATH ANN, V129, P45