Sol-gel derived In2S3 buffer layers for inverted organic photovoltaic cells

被引:34
作者
Asian, Ferhat [1 ,2 ]
Adam, Getachew [2 ]
Stadler, Philipp [2 ]
Goktas, Abdullah [1 ]
Mutlu, Ibrahim Halil [1 ]
Sariciftci, Niyazi Serdar [2 ]
机构
[1] Harran Univ, Fac Arts & Sci, Dept Phys, TR-63300 Sanliurfa, Turkey
[2] Johannes Kepler Univ Linz, Linz Inst Organ Solar Cells LIOS, A-4040 Linz, Austria
关键词
Organic solar cells; Indium sulfide; Sol-gel method; P3HT:PCBM; THIN-FILMS; ATOMIC LAYER; POLYMER; MORPHOLOGY; EFFICIENT; CATHODE; OXIDE; ITO;
D O I
10.1016/j.solener.2014.07.011
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In2S3 - a wide-gap semiconductor - has been implemented in organic photovoltaics using an all-solution based sol gel route. Typically, indium sulfide is deployed as a buffer layer in copper indium sulfide (CIS) photovoltaic systems as electron-selective contact on the bottom electrode. We transferred this idea to organic, solution-processed photovoltaics, exploring its potential in an inverted hybrid device structure. The optical and morphological properties of the films were investigated by UV-Vis transmittance spectroscopy and scanning electron microscopy. The optical studies showed that the In2S3 films exhibit a band gap of similar to 2.25 eV. The effect of In2S3 film thickness on conversion efficiency of the device was also investigated. The device with the 158 +/- 5 nm of In2S3 film thickness provides the best performance with an average short-circuit current density (J(sc)) of approximately 7.96 +/- 0.12 mA/cm(2), open-circuit voltage (V-oc) of 0.609 +/- 0.007 V, fill factor (FF) of 0.49 +/- 0.014, and power conversion efficiency of 3.04 +/- 0.14%. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:230 / 237
页数:8
相关论文
共 37 条
[1]  
Bagley B.G., 1974, Amorphous and liquid semiconductors
[2]   A flexible textile structure based on polymeric photovoltaics using transparent cathode [J].
Bedeloglu, Ayse ;
Demir, Ali ;
Bozkurt, Yalcin ;
Sariciftci, Niyazi Serdar .
SYNTHETIC METALS, 2009, 159 (19-20) :2043-2048
[3]   Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode [J].
Cao, Weiran ;
Zheng, Ying ;
Li, Zhifeng ;
Wrzesniewski, Edward ;
Hammond, William T. ;
Xue, Jiangeng .
ORGANIC ELECTRONICS, 2012, 13 (11) :2221-2228
[4]   Conductive carbon paint as an anode buffer layer in inverted CdS/Poly(3-hexylthiophene) solar cells [J].
Cortina-Marrero, Hugo J. ;
Nair, P. K. ;
Hu, Hailin .
SOLAR ENERGY, 2013, 98 :196-202
[5]   Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes [J].
de Jong, MP ;
van IJzendoorn, LJ ;
de Voigt, MJA .
APPLIED PHYSICS LETTERS, 2000, 77 (14) :2255-2257
[6]   Electrochemically grown ZnO nanorods for hybrid solar cell applications [J].
Hames, Yakup ;
Alpaslan, Zuehal ;
Koesemen, Arif ;
San, Sait Eren ;
Yerli, Yusuf .
SOLAR ENERGY, 2010, 84 (03) :426-431
[7]   A Review on the Development of the Inverted Polymer Solar Cell Architecture [J].
Hau, Steven K. ;
Yip, Hin-Lap ;
Jen, Alex K. -Y. .
POLYMER REVIEWS, 2010, 50 (04) :474-510
[8]  
Heeger A.J., 2010, SEMICONDUCTING METAL
[9]   In situ fabrication of chalcogenide nanoflake arrays for hybrid solar cells: the case of In2S3/poly(3-hexylthiophene) [J].
Jia, Huimin ;
He, Weiwei ;
Chen, Xuewu ;
Lei, Yan ;
Zheng, Zhi .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (34) :12824-12828
[10]   Efficient, Large Area ITO-and-PEDOT-free Organic Solar Cell Sub-modules [J].
Jin, Hui ;
Tao, Chen ;
Velusamy, Marappan ;
Aljada, Muhsen ;
Zhang, Yuliang ;
Hambsch, Mike ;
Burn, Paul L. ;
Meredith, Paul .
ADVANCED MATERIALS, 2012, 24 (19) :2572-2577