Oral Cancer Screening by Artificial Intelligence-Oriented Interpretation of Optical Coherence Tomography Images

被引:11
作者
Ramezani, Kousar [1 ]
Tofangchiha, Maryam [1 ]
机构
[1] Qazvin Univ Med Sci, Dept Oral & Maxillofacial Radiol, Dent Caries Prevent Res Ctr, Qazvin, Iran
关键词
SWEPT-SOURCE; CONTRAST AGENTS; LESIONS; OCT; SEGMENTATION; DIAGNOSIS; THICKNESS; CARIES; SKIN; HISTOPATHOLOGY;
D O I
10.1155/2022/1614838
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Early diagnosis of oral cancer is critical to improve the survival rate of patients. The current strategies for screening of patients for oral premalignant and malignant lesions unfortunately miss a significant number of involved patients. Optical coherence tomography (OCT) is an optical imaging modality that has been widely investigated in the field of oncology for identification of cancerous entities. Since the interpretation of OCT images requires professional training and OCT images contain information that cannot be inferred visually, artificial intelligence (AI) with trained algorithms has the ability to quantify visually undetectable variations, thus overcoming the barriers that have postponed the involvement of OCT in the process of screening of oral neoplastic lesions. This literature review aimed to highlight the features of precancerous and cancerous oral lesions on OCT images and specify how AI can assist in screening and diagnosis of such pathologies.
引用
收藏
页数:10
相关论文
共 112 条
  • [1] Quantitative optical coherence tomography of fluid-filled oral mucosal lesions
    Adegun, O. K.
    Tomlins, P. H.
    Hagi-Pavli, E.
    Bader, D. L.
    Fortune, Farida
    [J]. LASERS IN MEDICAL SCIENCE, 2013, 28 (05) : 1249 - 1255
  • [2] Quantitative analysis of optical coherence tomography and histopathology images of normal and dysplastic oral mucosal tissues
    Adegun, Oluyori Kutulola
    Tomlins, Pete H.
    Hagi-Pavli, Eleni
    Mckenzie, Gordon
    Piper, Kim
    Bader, Dan L.
    Fortune, Farida
    [J]. LASERS IN MEDICAL SCIENCE, 2012, 27 (04) : 795 - 804
  • [3] In Vivo Endoscopic Optical Coherence Tomography of the Healthy Human Oral Mucosa: Qualitative and Quantitative Image Analysis
    Albrecht, Marius
    Schnabel, Christian
    Mueller, Juliane
    Golde, Jonas
    Koch, Edmund
    Walther, Julia
    [J]. DIAGNOSTICS, 2020, 10 (10)
  • [4] Ali Saqib, 2021, F1000Res, V10, P310, DOI 10.12688/f1000research.52031.1
  • [5] Validity of narrow band imaging in the detection of oral and oropharyngeal malignant lesions: A systematic review and meta-analysis
    Ansari, Umair H.
    Wong, Eugene
    Smith, Murray
    Singh, Narinder
    Palme, Carsten E.
    Smith, Mark C.
    Riffat, Faruque
    [J]. HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2019, 41 (07): : 2430 - 2440
  • [6] Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography
    Araujo Maia, Ana Marly
    de Freitas, Anderson Zanardi
    Campello, Sergio de L.
    Leonidas Gomes, Anderson Stevens
    Karlsson, Lena
    [J]. JOURNAL OF BIOPHOTONICS, 2016, 9 (06) : 596 - 602
  • [7] Ten Years of Gabor-Domain Optical Coherence Microscopy
    Canavesi, Cristina
    Rolland, Jannick P.
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (12):
  • [8] Gold nanocages as contrast agents for spectroscopic optical coherence tomography
    Cang, H
    Sun, T
    Li, ZY
    Chen, JY
    Wiley, BJ
    Xia, YN
    Li, XD
    [J]. OPTICS LETTERS, 2005, 30 (22) : 3048 - 3050
  • [9] Detection of Oral Dysplastic and Early Cancerous Lesions by Polarization-Sensitive Optical Coherence Tomography
    Chen, Ping-Hsien
    Lee, Hung-Yi
    Chen, Yi-Fen
    Yeh, Yi-Chen
    Chang, Kuo-Wei
    Hou, Ming-Chih
    Kuo, Wen-Chuan
    [J]. CANCERS, 2020, 12 (09) : 1 - 18
  • [10] Evaluation of ultrahigh-resolution optical coherence tomography for basal cell carcinoma, seborrheic keratosis, and nevus
    Chen, Shufen
    Xie, Fang
    Hao, Tian
    Xie, Jun
    Wang, Xianghong
    Chen, Si
    Liu, Linbo
    Li, Chengxin
    [J]. SKIN RESEARCH AND TECHNOLOGY, 2021, 27 (04) : 479 - 485