Wind Energy Conversion Systems Nonlinear Tracking Using Finite-Horizon SDRE

被引:0
作者
Khamis, Ahmed [1 ]
机构
[1] Mil Tech Coll, Dept Guidance & Control, Cairo, Egypt
来源
2015 IEEE ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC) | 2015年
关键词
State Dependent Riccati Equation; Wind Energy Conversion System; Nonlinear Optimal Control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This research is devoted in the implementation of control system for a nonlinear Wind Energy Conversion Systems (WECS) with Permanent Magnet Synchronous Generators (PMSG). In which a finite-horizon nonlinear control technique based on State Dependent Riccati Equation (SDRE) for the design of a closed-loop, optimal controller is used. The idea of the proposed technique is the change of variables that converts the nonlinear differential Riccati equation to a linear Lyapunov differential equation. The proposed technique is effective for a wide range of operating points. Simulation results are given to illustrate the effectiveness of the proposed technique.
引用
收藏
页码:681 / 685
页数:5
相关论文
共 50 条
[31]   Maximum Power Point Tracking For a PMSG Based Variable Speed Wind Energy Conversion System using Optimal Torque Control [J].
Kumar, Sooraj Suresh ;
Jayanthi, K. ;
Kumar, N. Senthil .
PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2016, :347-352
[32]   Wind Velocity Sensorless Maximum Power Point Tracking Algorithm in Grid-connected Wind Energy Conversion System [J].
Linus, Rajin M. ;
Damodharan, Perumal .
ELECTRIC POWER COMPONENTS AND SYSTEMS, 2015, 43 (15) :1761-1770
[33]   Maximum Power Point Tracking Control for Non-Gaussian Wind Energy Conversion System by Using Survival Information Potential [J].
Yin, Liping ;
Lai, Lanlan ;
Zhu, Zhengju ;
Li, Tao .
ENTROPY, 2022, 24 (06)
[34]   Far Field Region of Radiated Emissions from Wind Energy Conversion Systems [J].
Fisahn, Sven ;
Pham, Hoang Duc ;
Sandmann, Sergei ;
Garbe, Heyno ;
Koj, Sebastian .
2019 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC EUROPE 2019), 2019, :450-455
[35]   A control algorithm to increase the efficient operation of wind energy conversion systems under extreme wind conditions [J].
Jargalsaikhan, Nyam ;
Masrur, Hasan ;
Iqbal, Atif ;
Rangarajan, Shriram S. ;
Byambaa, Sergelen ;
Senjyu, Tomonobu .
ENERGY REPORTS, 2022, 8 :11429-11439
[36]   Sliding mode power control of variable speed wind energy conversion systems [J].
Beltran, B. ;
Ahmed-Ali, T. ;
Benbouzid, M. E. H. .
IEEE IEMDC 2007: PROCEEDINGS OF THE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, VOLS 1 AND 2, 2007, :943-+
[37]   MPPT Control Methods in Wind Energy Conversion System Using DFIG [J].
Kadri, Ameni ;
Marzougui, Hajer ;
Bacha, Faouzi .
2016 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2016,
[38]   Modeling of Wind Turbine Simulator for Analysis of the Wind Energy Conversion System Using MATLAB/Simulink [J].
Bhayo, M. A. ;
Yatim, A. H. M. ;
Khokhar, S. ;
Aziz, M. J. A. ;
Idris, N. R. N. .
2015 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2015, :122-127
[39]   Analyzing the Static and Dynamic Characteristics of Wind Energy Conversion System Using Wind Turbine Simulator [J].
Bhayo, M. A. ;
Aziz, M. J. A. ;
Yatim, A. H. M. ;
Idris, N. R. N. .
2017 3RD IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2017, :123-127
[40]   A novel robust nonlinear optimal second-order sliding mode control scheme for power optimization of wind energy conversion systems [J].
Shalbafian, Arefe ;
Ganjefar, Soheil .
WIND ENGINEERING, 2024, 48 (06) :979-998