Time-dependent global attractor for extensible Berger equation

被引:17
作者
Meng, Fengjuan [1 ]
Wu, Jie [2 ]
Zhao, Chunxiang [3 ]
机构
[1] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
[2] Natl Univ Singapore, Dept Math, Block S17,10 Lower Kent Ridge Rd, Singapore 119076, Singapore
[3] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
Time-dependent attractor; Berger equation; Critical exponent; SEMILINEAR WAVE-EQUATION; EXPONENTIAL ATTRACTORS; STABILITY; DYNAMICS; EXISTENCE; BEAM;
D O I
10.1016/j.jmaa.2018.09.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the asymptotic behavior of the nonautonomous Berger equation epsilon(t)u(tt) + Delta(2)u - (Q + integral(Omega) vertical bar del u vertical bar(2) dx) Delta u + g(u(t)) + phi(u) = f, t > tau, on a bounded smooth domain Omega subset of R-N with hinged boundary condition, where epsilon(t) is a decreasing function vanishing at infinity. Under suitable assumptions, we establish an invariant time-dependent global attractor within the theory of process on time-dependent space. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1045 / 1069
页数:25
相关论文
共 34 条
  • [1] STABILITY THEORY FOR AN EXTENSIBLE BEAM
    BALL, JM
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (03) : 399 - 418
  • [2] INITIAL-BOUNDARY VALUE-PROBLEMS FOR AN EXTENSIBLE BEAM
    BALL, JM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 42 (01) : 61 - 90
  • [3] Berger H.M., 1955, J APPL MECH, V22, P465, DOI DOI 10.1115/1.4011138
  • [4] BURGREEN D, 1951, J APPL MECH-T ASME, V18, P135
  • [5] Buzutti A. C., 1994, Applicable Analysis, V55, P61, DOI 10.1080/00036819408840290
  • [6] Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation
    Cavalcanti, MM
    Cavalcanti, VND
    Soriano, JA
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (05) : 705 - 731
  • [7] A MINIMAL APPROACH TO THE THEORY OF GLOBAL ATTRACTORS
    Chepyzhov, Vladimir V.
    Conti, Monica
    Pata, Vittorino
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) : 2079 - 2088
  • [8] CHUESHOV I, 2008, MEMOIRS AMS, V195
  • [9] Chueshov I., 2002, Introduction to the Theory of Infinite-Dimensional Dissipative Systems
  • [10] Chueshov I, 2008, DISCRETE CONT DYN-A, V20, P459