On uniqueness of Riemann's examples

被引:6
作者
Fang, Y [1 ]
Wei, FS
机构
[1] Australian Natl Univ, Sch Math Sci, Ctr Math & Applicat, Canberra, ACT 0200, Australia
[2] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
关键词
D O I
10.1090/S0002-9939-98-04441-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a properly embedded minimal annulus with one flat end, bounded in a slab by lines or circles, is a part of a Riemann's example.
引用
收藏
页码:1531 / 1539
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 1984, EIGENVALUES RIEMANNI
[2]  
[Anonymous], 1989, J AMS, DOI DOI 10.1090/S0894-0347-1989-1002088-X
[3]  
[Anonymous], 1986, SURVEY MINIMAL SURFA
[4]   SIZE OF A STABLE MINIMAL SURFACE IN R3 [J].
BARBOSA, JL ;
DOCARMO, M .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (02) :515-528
[5]   THE STRUCTURE OF SINGLY-PERIODIC MINIMAL-SURFACES [J].
CALLAHAN, M ;
HOFFMAN, D ;
MEEKS, WH .
INVENTIONES MATHEMATICAE, 1990, 99 (03) :455-481
[6]  
Dierkes U, 1992, Minimal Surfaces, VI
[7]   ON MINIMAL ANNULI IN A SLAB [J].
FANG, Y .
COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (03) :417-430
[8]   Total curvature of branched minimal surfaces [J].
Fang, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (06) :1895-1898
[9]   EMBEDDED MINIMAL ANNULI IN R3 BOUNDED BY A PAIR OF STRAIGHT-LINES [J].
HOFFMAN, D ;
KARCHER, H ;
ROSENBERG, H .
COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (04) :599-617
[10]  
Jackson S. B., 1944, B AM MATH SOC, V50, P564