Learning Fuzzy Rule Based Classifier in High Performance Computing Environment

被引:0
作者
Vieira, Vinicius da F. [1 ]
Evsukoff, Alexandre G. [1 ]
de Lima, Beatriz S. L. P. [1 ]
Galichet, Sylvie [2 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, Rio De Janeiro, Brazil
[2] Univ Savoie, LISTIC Polytech Savoie, F-74944 Annecy Le Vieux, France
来源
PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE | 2009年
关键词
Fuzzy rule-based classifier; genetic algorithm; spectral clustering; high performance computing; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An approach to estimate the number of rules by spectral analysis of the training dataset has been recently proposed [1]. This work presents an analysis of such a method in high performance computing environment. Two approaches for parallel implementation of the method were studied considering the structure selection genetic algorithm and the spectral decomposition. The results show that both approaches have allowed to reduce considerably the overall processing time.
引用
收藏
页码:768 / 773
页数:6
相关论文
共 13 条
  • [1] [Anonymous], 1997, C BOARD MATH SCI
  • [2] [Anonymous], 1994, Introduction to parallel computing: design and analysis of algorithms
  • [3] Asuncion Arthur, 2007, Uci machine learning repository
  • [4] Cantu-Paz E., 1998, CALCULATEURS PARALLE, V10
  • [5] EVSUKOFF AG, 2007, P 2007 IEEE INT C FU
  • [6] Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization
    Evsukoffa, Alexandre G.
    Galichet, Sylvie
    de Lima, Beatriz S. L. P.
    Ebecken, Nelson F. F.
    [J]. FUZZY SETS AND SYSTEMS, 2009, 160 (07) : 857 - 881
  • [7] A survey of kernel and spectral methods for clustering
    Filippone, Maurizio
    Camastra, Francesco
    Masulli, Francesco
    Rovetta, Stefano
    [J]. PATTERN RECOGNITION, 2008, 41 (01) : 176 - 190
  • [8] SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems
    Hernandez, V
    Roman, JE
    Vidal, V
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (03): : 351 - 362
  • [9] Fuzzy methods in machine learning and data mining: Status and prospects
    Hüllermeier, E
    [J]. FUZZY SETS AND SYSTEMS, 2005, 156 (03) : 387 - 406
  • [10] Rule weight specification in fuzzy rule-based classification systems
    Ishibuchi, H
    Yamamoto, T
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 428 - 435