A RESULT ON THE EQUATION xp + yp = zr USING FREY ABELIAN VARIETIES

被引:4
作者
Billerey, Nicolas [1 ,2 ]
Chen, Imin [3 ]
Dieulefait, Luis [4 ]
Freitas, Nuno [5 ]
机构
[1] Univ Blaise Pascal, Univ Clermont Auvergne, Lab Math, BP 10448, F-63000 Clermont Ferrand, France
[2] CNRS, UMR 6620, LM, F-63171 Aubiere, France
[3] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[4] Univ Barcelona, Dept Algebra & Geometria, GV De Les Corts Catalanes 585, E-08007 Barcelona, Spain
[5] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
STABLE ELLIPTIC-CURVES; ABELIAN-VARIETIES; REPRESENTATIONS; CRITERIA; POINTS; FIELDS;
D O I
10.1090/proc/13475
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Diophantine result on generalized Fermat equations of the form x(p) + y(p) = z(r) which for the first time requires the use of Frey abelian varieties of dimension >= 2 in Darmon's program. More precisely, for r >= 5 a regular prime we prove that there exists a constant C(r) such that for every prime number p > C(r) the equation x(p) + y(p) = z(r) has no non-trivial primitive integer solutions (a, b, c) satisfying r vertical bar ab and 2 vertical bar ab. For the proof, we complement Darmon's ideas in a particular case by providing an irreducibility criterion for the mod p representations attached to certain families of abelian varieties of GL2-type over totally real fields.
引用
收藏
页码:4111 / 4117
页数:7
相关论文
共 12 条
[1]   IRREDUCIBLE CRITERIA FOR THE REPRESENTATION OF ELLIPTIC CURVES [J].
Billerey, Nicolas .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (04) :1001-1032
[2]   Rigid local systems, Hilbert modular forms, and Fermat's last theorem [J].
Darmon, H .
DUKE MATHEMATICAL JOURNAL, 2000, 102 (03) :413-449
[3]  
David Agnes, 2012, ARXIV11033892
[4]  
Dieulefait L, 2013, MATH ANN, V357, P987, DOI 10.1007/s00208-013-0920-7
[5]   Criteria for Irreducibility of mod p Representations of Frey Curves [J].
Freitas, Nuno ;
Siksek, Samir .
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2015, 27 (01) :67-76
[6]  
Grothendieck Alexander, 1967, SEM GEOM ALG EXP, V7
[7]   Semi-stable elliptical curves and quadratic fields [J].
Kraus, A .
JOURNAL OF NUMBER THEORY, 1996, 60 (02) :245-253
[8]   Semi-stable elliptic curves on number fields [J].
Kraus, Alain .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (04) :611-633
[9]   DETERMINANTS OF SUBQUOTIENTS OF GALOIS REPRESENTATIONS ASSOCIATED WITH ABELIAN VARIETIES [J].
Larson, Eric ;
Vaintrob, Dmitry .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2014, 13 (03) :517-559
[10]   GALOIS ACTION ON DIVISION POINTS OF ABELIAN VARIETIES WITH REAL MULTIPLICATIONS [J].
RIBET, KA .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (03) :751-804