Markov perfect equilibrium existence for a class of undiscounted infinite-horizon dynamic games

被引:1
|
作者
Garcia, A [1 ]
Smith, RL
机构
[1] Brattle Grp, Washington, DC USA
[2] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI USA
基金
美国国家科学基金会;
关键词
dynamic games; infinite horizon; average reward; alternating moves;
D O I
10.1023/A:1004663800322
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We prove the existence of Markov perfect equilibria (MPE) for nonstationary undiscounted infinite-horizon dynamic games with alternating moves. A suitable finite-horizon equilibrium relaxation, the ending state constrained MPE, captures the relevant features of an infinite-horizon MPE for a long enough horizon, under a uniformly bounded reachability assumption.
引用
收藏
页码:421 / 429
页数:9
相关论文
共 50 条
  • [1] Markov Perfect Equilibrium Existence for a Class of Undiscounted Infinite-Horizon Dynamic Games
    A. Garcia
    R. L. Smith
    Journal of Optimization Theory and Applications, 2000, 106 : 421 - 429
  • [2] Non-existence of subgame-perfect ε-equilibrium in perfect information games with infinite horizon
    Flesch, Janos
    Kuipers, Jeroen
    Mashiah-Yaakovi, Ayala
    Schoenmakers, Gijs
    Shmaya, Eran
    Solan, Eilon
    Vrieze, Koos
    INTERNATIONAL JOURNAL OF GAME THEORY, 2014, 43 (04) : 945 - 951
  • [3] Economic MPC of Markov Decision Processes: Dissipativity in undiscounted infinite-horizon optimal control
    Gros, Sebastien
    Zanon, Mario
    AUTOMATICA, 2022, 146
  • [4] SUBGAME-PERFECT EQUILIBRIA OF FINITE-HORIZON AND INFINITE-HORIZON GAMES
    FUDENBERG, D
    LEVINE, D
    JOURNAL OF ECONOMIC THEORY, 1983, 31 (02) : 251 - 268
  • [5] Structured Perfect Bayesian Equilibrium in Infinite Horizon Dynamic Games with Asymmetric Information
    Sinha, Abhinav
    Anastasopoulos, Achilleas
    2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 256 - 263
  • [6] PERFECT EQUILIBRIUM HISTORIES OF FINITE AND INFINITE HORIZON GAMES
    BORGERS, T
    JOURNAL OF ECONOMIC THEORY, 1989, 47 (01) : 218 - 227
  • [7] OPTIMAL INFINITE-HORIZON UNDISCOUNTED CONTROL OF FINITE PROBABILISTIC SYSTEMS
    PLATZMAN, LK
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1980, 18 (04) : 362 - 380
  • [8] Zero-sum infinite-horizon discounted piecewise deterministic Markov games
    Huang, Yonghui
    Lian, Zhaotong
    Guo, Xianping
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2023, 97 (02) : 179 - 205
  • [9] Infinite-Horizon Average-Cost Markov Decision Process Routing Games
    Calderone, Dan
    Sastry, S. Shankar
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [10] Zero-sum infinite-horizon discounted piecewise deterministic Markov games
    Yonghui Huang
    Zhaotong Lian
    Xianping Guo
    Mathematical Methods of Operations Research, 2023, 97 : 179 - 205