Parameter Identification of Motors by Cuckoo Search Using Steady-State Relations

被引:14
|
作者
Rodriguez-Abreo, Omar [1 ,2 ,3 ]
Hernandez-Paredes, Jose Miguel [3 ,4 ]
Rangel, Alejandro Flores [1 ,3 ]
Fuentes-Silva, Carlos [1 ,3 ]
Velasquez, Francisco Antonio Castillo [3 ,5 ]
机构
[1] Univ Politecn Queretaro, Ind Technol Div, Queretaro 76240, Mexico
[2] Inst Politecn Nacl, Queretaro 76090, Mexico
[3] Red Invest OAC Optimizac Automatizac & Control, Queretaro 76240, Mexico
[4] Higher Technol Inst Huichapan, Mechatron Engn Div, Huichapan 42411, Mexico
[5] Univ Politecn Queretaro, Div Informat Technol, Queretaro 76240, Mexico
关键词
Cuckoo search; metaheuristic; parameter estimation; DC motor; Steiglitz-McBride algorithm; FILTER;
D O I
10.1109/ACCESS.2021.3078578
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The direct current (DC) motors are widely used; therefore, they are subject to multiple studies, different control techniques or analyses require a dynamic DC motor model. The parameters are needed to complete the model, which can be challenging to obtain. Therefore, multiple parametric estimation techniques have been developed. This paper presents a metaheuristic cuckoo search algorithm modified for motors as a parametric estimation tool. A cost function is based on the current and velocity error obtained when an input voltage step is applied to the motor. The main difference with similar works is that we used the steady-state equations to determine the parameters. The algorithm proposed is compared with the Steiglitz-McBride and the original cuckoo search algorithms to evaluate its performance objectively. Simulated and experimental results show that the algorithm proposed can calculate the parameters with better accuracy than the original cuckoo search and Steiglitz-McBride. The modifications made to the original algorithm of the cuckoo search allowed finding the values of the parameters motor with a root mean square error of less than 0.1% for signals obtained with simulation and less than 1% for real signals sampled at 0.001 s.
引用
收藏
页码:72017 / 72024
页数:8
相关论文
共 50 条
  • [1] Steady-state parameter identification of UHV transformer model
    Deng, X., 1600, China Machine Press (29):
  • [2] Parameter identification technique for uncertain chaotic systems using state feedback and steady-state analysis
    Zaher, Ashraf A.
    PHYSICAL REVIEW E, 2008, 77 (03):
  • [3] PARAMETER-IDENTIFICATION FOR STEADY-STATE GROUNDWATER-FLOW
    TSURUMI, N
    UTSUGIDA, Y
    KAWAHARA, M
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1995, 20 (04) : 233 - 252
  • [4] Using steady-state prior knowledge to constrain parameter estimates in nonlinear system identification
    Corrêa, MV
    Aguirre, LA
    Saldanha, RR
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (09) : 1376 - 1381
  • [5] A scalable method for parameter identification in kinetic models of metabolism using steady-state data
    Srinivasan, Shyam
    Cluett, William R.
    Mahadevan, Radhakrishnan
    BIOINFORMATICS, 2019, 35 (24) : 5216 - 5225
  • [6] A cuckoo search algorithm optimizer for steady-state analysis of self-excited induction generator
    Hasanien, Hany M.
    Hashem, Gamal M.
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 2549 - 2555
  • [7] Metaheuristic Parameter Identification of Motors Using Dynamic Response Relations
    Rodriguez-Abreo, Omar
    Rodriguez-Resendiz, Juvenal
    Alvarez-Alvarado, Jose Manuel
    Garcia-Cerezo, Alfonso
    SENSORS, 2022, 22 (11)
  • [8] Parameter identification for a LuGre model based on steady-state tire conditions
    X. D. Wu
    S. G. Zuo
    L. Lei
    X. W. Yang
    Y. Li
    International Journal of Automotive Technology, 2011, 12 : 671 - 677
  • [9] Parameter identification for a LuGre model based on steady-state tire conditions
    Wu, X. D.
    Zuo, S. G.
    Lei, L.
    Yang, X. W.
    Li, Y.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2011, 12 (05) : 671 - 677
  • [10] Parameter Identification of Flexible Supercapacitors with Fractional Cuckoo Search
    AbdelAty, A. M.
    Fouda, M. E.
    Elbarawy, M. T. M. M.
    Attia, H. A.
    Radwan, A. G.
    2020 32ND INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM), 2020, : 238 - 241