An adaptive machine learning methodology to determine manufacturing process parameters for each part

被引:6
作者
Muhr, David [1 ]
Tripathi, Shailesh [1 ]
Jodlbauer, Herbert [1 ]
机构
[1] Univ Appl Sci Upper Austria, A-4400 Steyr, Austria
来源
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING (ISM 2020) | 2021年 / 180卷
关键词
parameter optimization; process parameters; process optimization; regression analysis; concept drift; adaptation; autocorrelation; machine learning; manufacturing; industry; 4.0; OPTIMIZATION;
D O I
10.1016/j.procs.2021.01.325
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The identification of appropriate manufacturing process parameters typically relies on rule-based schemes, expertise, and domain knowledge of highly skilled workers. Usually, the parameter settings remain the same for each part in an individual production lot once an acceptable quality is reached. Each part, however, has slightly different properties and part-specific parameter settings have the opportunity to increase quality and reduce scrap. We propose a simple linear regression model to identify process parameters based on experimental data and extend that model with ideas from time series analysis to achieve highly-accurate, part-specific parameter settings in a real-world manufacturing use case. We show the usefulness of exploiting the (autocorrelated) structure of regression residuals to improve the predictive performance of regression models in manufacturing environments. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页码:764 / 771
页数:8
相关论文
共 23 条
[1]   Progress Toward an Integration of Process-Structure-Property-Performance Models for "Three-Dimensional (3-D) Printing" of Titanium Alloys [J].
Collins, P. C. ;
Haden, C. V. ;
Ghamarian, I. ;
Hayes, B. J. ;
Ales, T. ;
Penso, G. ;
Dixit, V. ;
Harlow, G. .
JOM, 2014, 66 (07) :1299-1309
[2]   Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part [J].
Ding, Donghong ;
Shen, Chen ;
Pan, Zengxi ;
Cuiuri, Dominic ;
Li, Huijun ;
Larkin, Nathan ;
van Duin, Stephen .
COMPUTER-AIDED DESIGN, 2016, 73 :66-75
[3]   A Survey on Concept Drift Adaptation [J].
Gama, Joao ;
Zliobaite, Indre ;
Bifet, Albert ;
Pechenizkiy, Mykola ;
Bouchachia, Abdelhamid .
ACM COMPUTING SURVEYS, 2014, 46 (04)
[4]  
Hollis K.L., 2012, ENCY SCI LEARNING, P95, DOI [10.1007/ 978- 1-4419-1428- 6{ extunderscore} 504, DOI 10.1007/978-1-4419-1428-6{EXTUNDERSCORE}504]
[5]  
Kommenda M., 2015, P EUR MOD SIM S, P222
[6]   Intelligent Optimization of Hard-Turning Parameters Using Evolutionary Algorithms for Smart Manufacturing [J].
Mia, Mozammel ;
Krolczyk, Grzegorz ;
Maruda, Radoslaw ;
Wojciechowski, Szymon .
MATERIALS, 2019, 12 (06)
[7]   Investigation of dynamic elastic deformation of parts processed by fused deposition modeling additive manufacturing [J].
Mohamed, Omar A. ;
Masood, Syed H. ;
Bhowmik, Jahar L. .
ADVANCES IN PRODUCTION ENGINEERING & MANAGEMENT, 2016, 11 (03) :227-238
[8]  
Mohri M., 2009, ADV NEURAL INFORM PR, V21, P1097
[9]   Divide and conquer anomaly detection: A case study predicting defective engines [J].
Muhra, David ;
Tripathi, Shailesh ;
Jodlbauer, Herbert .
INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING (ISM 2019), 2020, 42 :57-61
[10]   Warpage and Shrinkage Optimization of Injection-Molded Plastic Spoon Parts for Biodegradable Polymers Using Taguchi, ANOVA and Artificial Neural Network Methods [J].
Oliaei, Erfan ;
Heidari, Behzad Shiroud ;
Davachi, Seyed Mohammad ;
Bahrami, Mozhgan ;
Davoodi, Saeed ;
Hejazi, Iman ;
Seyfi, Javad .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2016, 32 (08) :710-720