El Nino-Southern Oscillation and the climate, ecosystems and rivers of Amazonia

被引:116
|
作者
Foley, JA
Botta, A
Coe, MT
Costa, MH
机构
[1] Univ Wisconsin, Gaylord Nelson Inst Environm Studies, Ctr Sustainabil & Global Environm SAGE, Madison, WI 53726 USA
[2] Univ Fed Vicosa, Dept Agr & Environm Engn, BR-36571000 Vicosa, MG, Brazil
关键词
El Nino-Southern Oscillation; Amazon Basin; terrestrial ecosystems; carbon cycling; water balance; river discharge;
D O I
10.1029/2002GB001872
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The El Nino-Southern Oscillation (ENSO) phenomenon is one of the dominant drivers of environmental variability in the tropics. In this study, we examine the connections between ENSO and the climate, ecosystem carbon balance, surface water balance, and river hydrology of the Amazon and Tocantins river basins in South America. First we examine the climatic variability associated with ENSO. We analyze long-term historical climate records to document the "average'' climatic signature of the El Nino and La Nina phases of the ENSO cycle. Generally speaking, the "average El Nino'' is drier and warmer than normal in Amazonia, while the "average La Nina'' is wetter and cooler. While temperature changes are mostly uniform through the whole year and are spatially homogeneous, precipitation changes are stronger during the wet season (January-February-March) and are concentrated in the northern and southeastern portions of the basin. Next we use a land surface/ecosystem model (IBIS), coupled to a hydrological routing algorithm (HYDRA), to examine how ENSO affects land surface water and carbon fluxes, as well as changes in river discharge and flooding. The model results suggest several responses to ENSO: (1) During the average El Nino, there is an anomalous source of CO2 from terrestrial ecosystems, mainly due to a decreased net primary production (NPP) in the north of the basin. There is also a decrease in river discharge along many of the rivers in the basin, which causes a decrease in flooded area along the main stem of the Amazon. (2) During the average La Nina, there is an anomalous sink of CO2 into terrestrial ecosystems, largely due to an increase in NPP in the northern portion of the basin. In addition, there is a large increase in river discharge in the Amazon basin, especially from the northern and western tributaries. There is a corresponding increase in flooded area, largely in the northern rivers. These results illustrate that changes in water and carbon balance associated with ENSO have complex, spatially heterogeneous features across the basin. This underscores the need for comprehensive analyses, using long-term observational data and model simulations, of regional environmental systems and their response to climatic variability.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] El Nino-Southern Oscillation, Pliocene climate and equifinality
    Bonham, Sarah G.
    Haywood, Alan M.
    Lunt, Daniel J.
    Collins, Mathew
    Salzmann, Ulrich
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1886): : 127 - 156
  • [2] Changing El Nino-Southern Oscillation in a warming climate
    Cai, Wenju
    Santoso, Agus
    Collins, Matthew
    Dewitte, Boris
    Karamperidou, Christina
    Kug, Jong-Seong
    Lengaigne, Matthieu
    McPhaden, Michael J.
    Stuecker, Malte F.
    Taschetto, Andrea S.
    Timmermann, Axel
    Wu, Lixin
    Yeh, Sang-Wook
    Wang, Guojian
    Ng, Benjamin
    Jia, Fan
    Yang, Yun
    Ying, Jun
    Zheng, Xiao-Tong
    Bayr, Tobias
    Brown, Josephine R.
    Capotondi, Antonietta
    Cobb, Kim M.
    Gan, Bolan
    Geng, Tao
    Ham, Yoo-Geun
    Jin, Fei-Fei
    Jo, Hyun-Su
    Li, Xichen
    Lin, Xiaopei
    McGregor, Shayne
    Park, Jae-Heung
    Stein, Karl
    Yang, Kai
    Zhang, Li
    Zhong, Wenxiu
    NATURE REVIEWS EARTH & ENVIRONMENT, 2021, 2 (09) : 628 - 644
  • [3] Climate impacts of the El Nino-Southern Oscillation on South America
    Cai, Wenju
    McPhaden, Michael J.
    Grimm, Alice M.
    Rodrigues, Regina R.
    Taschetto, Andrea S.
    Garreaud, Rene D.
    Dewitte, Boris
    Poveda, German
    Ham, Yoo-Geun
    Santoso, Agus
    Ng, Benjamin
    Anderson, Weston
    Wang, Guojian
    Geng, Tao
    Jo, Hyun-Su
    Marengo, Jose A.
    Alves, Lincoln M.
    Osman, Marisol
    Li, Shujun
    Wu, Lixin
    Karamperidou, Christina
    Takahashi, Ken
    Vera, Carolina
    NATURE REVIEWS EARTH & ENVIRONMENT, 2020, 1 (04) : 215 - 231
  • [4] What is the El Nino-Southern Oscillation?
    Scaife, Adam
    Guilyardi, Eric
    Cain, Michelle
    Gilbert, Alyssa
    WEATHER, 2019, 74 (07) : 250 - 251
  • [5] Climate regimes, El Nino-Southern oscillation and konzo epidemics
    Oluwole, Olusegun S. A.
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2015, 3
  • [6] Stochastically induced climate shift of El Nino-Southern Oscillation
    Flügel, M
    Chang, P
    GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (16) : 2473 - 2476
  • [7] El Nino-Southern Oscillation and its impact in the changing climate
    Yang, Song
    Li, Zhenning
    Yu, Jin-Yi
    Hu, Xiaoming
    Dong, Wenjie
    He, Shan
    NATIONAL SCIENCE REVIEW, 2018, 5 (06) : 840 - 857
  • [8] The El Nino-southern oscillation and Antarctica
    Turner, J
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2004, 24 (01) : 1 - 31
  • [9] El Nino-Southern Oscillation complexity
    Timmermann, Axel
    An, Soon-Il
    Kug, Jong-Seong
    Jin, Fei-Fei
    Cai, Wenju
    Capotondi, Antonietta
    Cobb, Kim M.
    Lengaigne, Matthieu
    McPhaden, Michael J.
    Stuecker, Malte F.
    Stein, Karl
    Wittenberg, Andrew T.
    Yun, Kyung-Sook
    Bayr, Tobias
    Chen, Han-Ching
    Chikamoto, Yoshimitsu
    Dewitte, Boris
    Dommenget, Dietmar
    Grothe, Pamela
    Guilyardi, Eric
    Ham, Yoo-Geun
    Hayashi, Michiya
    Ineson, Sarah
    Kang, Daehyun
    Kim, Sunyong
    Kim, WonMoo
    Lee, June-Yi
    Li, Tim
    Luo, Jing-Jia
    McGregor, Shayne
    Planton, Yann
    Power, Scott
    Rashid, Harun
    Ren, Hong-Li
    Santoso, Agus
    Takahashi, Ken
    Todd, Alexander
    Wang, Guomin
    Wang, Guojian
    Xie, Ruihuang
    Yang, Woo-Hyun
    Yeh, Sang-Wook
    Yoon, Jinho
    Zeller, Elke
    Zhang, Xuebin
    NATURE, 2018, 559 (7715) : 535 - 545
  • [10] Uncertainties in climate change prediction: El Nino-Southern Oscillation and monsoons
    Paeth, Heiko
    Scholten, Anja
    Friederichs, Petra
    Hense, Andreas
    GLOBAL AND PLANETARY CHANGE, 2008, 60 (3-4) : 265 - 288