Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise

被引:41
作者
Baeumer, Boris [1 ]
Geissert, Matthias [2 ]
Kovacs, Mihaly [1 ]
机构
[1] Univ Otago, Dept Math & Stat, Dunedin 9054, New Zealand
[2] Tech Univ Darmstadt, D-64289 Darmstadt, Germany
关键词
Volterra equation; Stochastic partial differential equation; Fractional differential equation; Wiener process; Gaussian noise; Multiplicative noise;
D O I
10.1016/j.jde.2014.09.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of semilinear Volterra type stochastic evolution equation driven by multiplicative Gaussian noise. The memory kernel, not necessarily analytic, is such that the deterministic linear equation exhibits a parabolic character. Under appropriate Lipschitz-type and linear growth assumptions on the nonlinear terms we show that the unique mild solution is mean-p Holder continuous with values in an appropriate Sobolev space depending on the kernel and the data. In particular, we obtain pathwise space-time (Sobolev-Holder) regularity of the solution together with a maximal type bound on the spatial Sobolev norm. As one of the main technical tools we establish a smoothing property of the derivative of the deterministic evolution operator family. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:535 / 554
页数:20
相关论文
共 20 条
[1]  
[Anonymous], 1935, FUNDAM MATH, DOI DOI 10.4064/FM-25-1-329-352
[2]  
Barbu V., 2013, APPL MATH OPTIM
[3]  
Bonaccorsi S, 2006, DYNAM SYST APPL, V15, P465
[4]   ASYMPTOTIC BEHAVIOR OF A CLASS OF NONLINEAR STOCHASTIC HEAT EQUATIONS WITH MEMORY EFFECTS [J].
Bonaccorsi, Stefano ;
Da Prato, Giuseppe ;
Tubaro, Luciano .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (03) :1562-1587
[5]  
Clement Ph., 1997, REND I MAT U TRIESTE, V29, P207
[6]  
DaPrato G., 1992, ENCY MATH APPL, V44
[7]  
Desch W., 2011, PROGR NONLINEAR DIFF, V80, P131
[8]   Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace class noise [J].
Jentzen, Arnulf ;
Roeckner, Michael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) :114-136
[9]  
Karczewska A., 2011, WHITE NOISE ANAL, V27, p[27, 214]
[10]  
Karczewska A., 2007, LECT NOTES NONLINEAR, V10