On the regularity of binomial edge ideals

被引:44
作者
Ene, Viviana [1 ,3 ]
Zarojanu, Andrei [2 ,3 ]
机构
[1] Ovidius Univ, Fac Math & Comp Sci, Constanta 900527, Romania
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest, Romania
[3] Romanian Acad, Res Grp Project ID PCE 2011 1023, Simion Stoilow Inst Math, Bucharest 014700, Romania
关键词
Binomial edge ideals; regularity; GRAPHS;
D O I
10.1002/mana.201300186
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the regularity of binomial edge ideals. For a closed graph G we show that the regularity of the binomial edge ideal J(G) coincides with the regularity of in(lex)(G) and can be expressed in terms of the combinatorial data of G. In addition, we give positive answers to Matsuda-Murai conjecture [8] for some classes of graphs. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:19 / 24
页数:6
相关论文
共 15 条
  • [1] Ay N., 2011, ARXIV11101338
  • [2] Cox D. A., 2013, ARXIV13065149
  • [3] Crupi M, 2011, ELECTRON J COMB, V18
  • [4] COHEN-MACAULAY BINOMIAL EDGE IDEALS
    Ene, Viviana
    Herzog, Juergen
    Hibi, Takayuki
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2011, 204 : 57 - 68
  • [5] Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6
  • [6] Binomial edge ideals and conditional independence statements
    Herzog, Juergen
    Hibi, Takayuki
    Hreinsdottir, Freyja
    Kahle, Thomas
    Rauh, Johannes
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (03) : 317 - 333
  • [7] Madani SS, 2013, ELECTRON J COMB, V20
  • [8] REGULARITY BOUNDS FOR BINOMIAL EDGE IDEALS
    Matsuda, Kazunori
    Murai, Satoshi
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (01) : 141 - 149
  • [9] GRAPHS AND IDEALS GENERATED BY SOME 2-MINORS
    Ohtani, Masahiro
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (03) : 905 - 917
  • [10] Peeva I, 2011, ALGEBRA APPL, V14, P1, DOI 10.1007/978-0-85729-177-6_1