5-HT2 and 5-HT7 receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons

被引:31
作者
Slawinska, Urszula [1 ]
Miazga, Krzysztof [1 ]
Jordan, Larry M. [2 ,3 ]
机构
[1] PAS, M Nencki Inst Expt Biol, Dept Neurophysiol, PL-02093 Warsaw, Poland
[2] Univ Manitoba, Dept Physiol, Winnipeg, MB, Canada
[3] Univ Manitoba, Spinal Cord Res Ctr, Winnipeg, MB, Canada
基金
加拿大健康研究院;
关键词
locomotion; recovery; spinal cord; total transection; serotonin; RESTORING VOLUNTARY CONTROL; LOCOMOTOR-LIKE ACTIVITY; CORD-INJURY DEPENDS; COMMISSURAL INTERNEURONS; IN-VITRO; CONSTITUTIVE ACTIVITY; PATTERN GENERATORS; MOTOR FUNCTIONS; 2A RECEPTORS; SEROTONIN;
D O I
10.3389/fncir.2014.00095
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OHDPAT) (acting on 5-HT1A/7 receptors) and quipazine (acting on 5-HT2 receptors), to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor central pattern generator (CPG). Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation.
引用
收藏
页数:12
相关论文
共 74 条
[61]   Recovery of hindlimb motor functions after spinal cord transection is enhanced by grafts of the embryonic raphe nuclei [J].
Slawinska, U ;
Majczynski, H ;
Djavadian, R .
EXPERIMENTAL BRAIN RESEARCH, 2000, 132 (01) :27-38
[62]  
SLAWINSKA U, 2012, SOC NEUR M
[63]  
SLAWINSKA U, 2011, ACTA NEUROBIOL EXP, V71, P83
[64]  
Slawinska U, 2014, ACTA NEUROBIOL EXP, V74, P172, DOI 10.55782/ane-2014-1983
[65]   Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion [J].
Slawinska, Urszula ;
Miazga, Krzysztof ;
Cabaj, Anna M. ;
Leszczynska, Anna N. ;
Majczynski, Henryk ;
Nagy, James I. ;
Jordan, Larry M. .
EXPERIMENTAL NEUROLOGY, 2013, 247 :572-581
[66]   Comment on "Restoring Voluntary Control of Locomotion After Paralyzing Spinal Cord Injury" [J].
Slawinska, Urszula ;
Rossignol, Serge ;
Bennett, David J. ;
Schmidt, Brian J. ;
Frigon, Alain ;
Fouad, Karim ;
Jordan, Larry M. .
SCIENCE, 2012, 338 (6105)
[67]   The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats [J].
Slawinska, Urszula ;
Majczynski, Henryk ;
Dai, Yue ;
Jordan, Larry M. .
JOURNAL OF PHYSIOLOGY-LONDON, 2012, 590 (07) :1721-1736
[68]   OSCILLATORY PROPERTIES OF THE CENTRAL PATTERN GENERATOR FOR LOCOMOTION IN NEONATAL RATS [J].
SQALLIHOUSSAINI, Y ;
CAZALETS, JR ;
CLARAC, F .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 70 (02) :803-813
[69]   Dual-mode operation of neuronal networks involved in left-right alternation [J].
Talpalar, Adolfo E. ;
Bouvier, Julien ;
Borgius, Lotta ;
Fortin, Gilles ;
Pierani, Alessandra ;
Kiehn, Ole .
NATURE, 2013, 500 (7460) :85-U108
[70]   Role of spinal 5-HT2 receptor subtypes in quipazine-induced hindlimb movements after a low-thoracic spinal cord transection [J].
Ung, Roth-V. ;
Landry, Eric S. ;
Rouleau, Pascal ;
Lapointe, Nicolas P. ;
Rouillard, Claude ;
Guertin, Pierre A. .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2008, 28 (11) :2231-2242