Attribute-Induced Bias Eliminating for Transductive Zero-Shot Learning

被引:5
作者
Yao, Hantao [1 ]
Min, Shaobo [2 ]
Zhang, Yongdong [2 ]
Xu, Changsheng [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[2] Univ Sci & Technol China, Natl Engn Lab Brain Inspired Intelligence Technol, Hefei 230026, Peoples R China
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Semantics; Visualization; Bridges; Training; Knowledge transfer; Image recognition; Topology; Transductive Zero-Shot Learning; Graph Attribute Embedding; Attribute-Induced Bias Eliminating; Semantic-Visual Alignment;
D O I
10.1109/TMM.2021.3074252
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Transductive zero-shot learning is designed to recognize unseen categories by aligning both visual and semantic information in a joint embedding space. Four types of domain biases exist in Transductive ZSL, i.e., visual bias and semantic bias in two domains, and two visual-semantic biases exist in the seen and unseen domains. However, the existing work has only focused on specific components of these topics, leading to severe semantic ambiguity during knowledge transfer. To solve this problem, we propose a novel attribute-induced bias eliminating (AIBE) module for Transductive ZSL. Specifically, for the visual bias between the two domains, the mean-teacher module is first used to bridge the visual representation discrepancy between the two domains using unsupervised learning and unlabeled images. Then, an attentional graph attribute embedding process is proposed to reduce the semantic bias between seen and unseen categories using a graph operation to describe the semantic relationship between categories. To reduce semantic-visual bias in the seen domain, we align the visual center of each category with the corresponding semantic attributes instead of with the individual visual data point, which preserves the semantic relationship in the embedding space. Finally, for the semantic-visual bias in the unseen domain, an unseen semantic alignment constraint is designed to align visual and semantic space using an unsupervised process. The evaluations on several benchmarks demonstrate the effectiveness of the proposed method, e.g., 82.8%/75.5%, 97.1%/82.5%, and 73.2%/52.1% for Conventional/Generalized ZSL settings for CUB, AwA2, and SUN datasets, respectively.
引用
收藏
页码:1933 / 1942
页数:10
相关论文
共 50 条
  • [41] Zero-Shot Learning With Attentive Region Embedding and Enhanced Semantics
    Liu, Yang
    Dang, Yuhao
    Gao, Xinbo
    Han, Jungong
    Shao, Ling
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 4220 - 4231
  • [42] A Progressive Placeholder Learning Network for Multimodal Zero-Shot Learning
    Yang, Zhuopan
    Yang, Zhenguo
    Li, Xiaoping
    Yu, Yi
    Li, Qing
    Liu, Wenyin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7933 - 7945
  • [43] Self-Assembled Generative Framework for Generalized Zero-Shot Learning
    Gao, Mengyu
    Dong, Qiulei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 914 - 924
  • [44] Prototype rectification for zero-shot learning
    Yi, Yuanyuan
    Zeng, Guolei
    Ren, Bocheng
    Yang, Laurence T.
    Chai, Bin
    Li, Yuxin
    PATTERN RECOGNITION, 2024, 156
  • [45] Multi-Label Zero-Shot Learning With Adversarial and Variational Techniques
    Gull, Muqaddas
    Arif, Omar
    IEEE ACCESS, 2024, 12 : 94990 - 95006
  • [46] GNDAN: Graph Navigated Dual Attention Network for Zero-Shot Learning
    Chen, Shiming
    Hong, Ziming
    Xie, Guosen
    Peng, Qinmu
    You, Xinge
    Ding, Weiping
    Shao, Ling
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4516 - 4529
  • [47] A Discriminative Cross-Aligned Variational Autoencoder for Zero-Shot Learning
    Liu, Yang
    Gao, Xinbo
    Han, Jungong
    Shao, Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (06) : 3794 - 3805
  • [48] A Deep Multi-Modal Explanation Model for Zero-Shot Learning
    Liu, Yu
    Tuytelaars, Tinne
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 4788 - 4803
  • [49] Domain-Aware Prototype Network for Generalized Zero-Shot Learning
    Hu, Yongli
    Feng, Lincong
    Jiang, Huajie
    Liu, Mengting
    Yin, Baocai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3180 - 3191
  • [50] EGANS: Evolutionary Generative Adversarial Network Search for Zero-Shot Learning
    Chen, Shiming
    Chen, Shuhuang
    Hou, Wenjin
    Ding, Weiping
    You, Xinge
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (03) : 582 - 596