Error estimate of the P1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations

被引:15
|
作者
Lu, Xiliang [1 ]
Lin, Ping [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
[2] Univ Dundee, Div Math, Dundee DD1 4HN, Scotland
关键词
SEQUENTIAL REGULARIZATION METHOD; APPROXIMATION; FORMULATION; DYNAMICS; FLOWS;
D O I
10.1007/s00211-009-0277-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a finite element method for the penalty formulation of the time dependent Navier-Stokes equations. Usually the improper choice of the finite element space will lead that the error estimate (inversely) depends on the penalty parameter epsilon. We use the classical P-1 nonconforming finite element space for the spatial discretization. Optimal epsilon-uniform error estimations for both velocity and pressure are obtained.
引用
收藏
页码:261 / 287
页数:27
相关论文
共 50 条