Error estimate of the P1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations

被引:15
|
作者
Lu, Xiliang [1 ]
Lin, Ping [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
[2] Univ Dundee, Div Math, Dundee DD1 4HN, Scotland
关键词
SEQUENTIAL REGULARIZATION METHOD; APPROXIMATION; FORMULATION; DYNAMICS; FLOWS;
D O I
10.1007/s00211-009-0277-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a finite element method for the penalty formulation of the time dependent Navier-Stokes equations. Usually the improper choice of the finite element space will lead that the error estimate (inversely) depends on the penalty parameter epsilon. We use the classical P-1 nonconforming finite element space for the spatial discretization. Optimal epsilon-uniform error estimations for both velocity and pressure are obtained.
引用
收藏
页码:261 / 287
页数:27
相关论文
共 50 条
  • [1] Error estimate of the P1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations
    Xiliang Lu
    Ping Lin
    Numerische Mathematik, 2010, 115 : 261 - 287
  • [2] Error Analysis of the Nonconforming P1 Finite Element Method to the Sequential Regularization Formulation for Unsteady Navier-Stokes Equations
    Yanming Lai
    Kewei Liang
    Ping Lin
    Xiliang Lu
    Qimeng Quan
    Annals of Applied Mathematics, 2024, 40 (01) : 43 - 70
  • [3] A nonconforming finite element method for the stationary Navier-Stokes equations
    Karakashian, OA
    Jureidini, WN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 93 - 120
  • [4] A superconvergent nonconforming mixed finite element method for the Navier-Stokes equations
    Ren, Jincheng
    Ma, Yue
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 646 - 660
  • [5] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174
  • [6] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations
    Cai, ZQ
    Douglas, J
    Ye, X
    CALCOLO, 1999, 36 (04) : 215 - 232
  • [7] The nonconforming virtual element method for the Navier-Stokes equations
    Liu, Xin
    Chen, Zhangxin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 51 - 74
  • [8] The nonconforming virtual element method for the Navier-Stokes equations
    Xin Liu
    Zhangxin Chen
    Advances in Computational Mathematics, 2019, 45 : 51 - 74
  • [9] Stabilized Multiscale Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
    Zhang, Tong
    Xu, Shunwei
    Deng, Jien
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [10] Global finite element nonlinear galerkin method for the penalized navier-stokes equations
    He, YN
    Hou, YR
    Mei, LQ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (06) : 607 - 616