Criteria Comparative Learning for Real-Scene Image Super-Resolution

被引:10
|
作者
Shi, Yukai [1 ]
Li, Hao [1 ]
Zhang, Sen [2 ]
Yang, Zhijing [1 ]
Wang, Xiao [3 ]
机构
[1] Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
[2] Univ Sydney, Fac Engn, Sydney, NSW 2006, Australia
[3] Anhui Univ, Hefei 230039, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Training; Task analysis; Image restoration; Superresolution; Hafnium; Degradation; Feature extraction; Comparative Learning; criteria; Index Terms; real-world scene; image super-resolution; NETWORK;
D O I
10.1109/TCSVT.2022.3195783
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Real-scene image super-resolution aims to restore real-world low-resolution images into their high-quality versions. A typical RealSR framework usually includes the optimization of multiple criteria which are designed for different image properties, by making the implicit assumption that the ground-truth images can provide a good trade-off between different criteria. However, this assumption could be easily violated in practice due to the inherent contrastive relationship between different image properties. Contrastive learning (CL) provides a promising recipe to relieve this problem by learning discriminative features using the triplet contrastive losses. Though CL has achieved significant success in many computer vision tasks, it is non-trivial to introduce CL to RealSR due to the difficulty in defining valid positive image pairs in this case. Inspired by the observation that the contrastive relationship could also exist between the criteria, in this work, we propose a novel training paradigm for RealSR, named Criteria Comparative Learning (Cria-CL), by developing contrastive losses defined on criteria instead of image patches. In addition, a spatial projector is proposed to obtain a good view for Cria-CL in RealSR. Our experiments demonstrate that compared with the typical weighted regression strategy, our method achieves a significant improvement under similar parameter settings.
引用
收藏
页码:8476 / 8485
页数:10
相关论文
共 50 条
  • [31] Learning Dynamic Generative Attention for Single Image Super-Resolution
    Chen, Rui
    Zhang, Yan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8368 - 8382
  • [32] Learning Deep Resonant Prior for Hyperspectral Image Super-Resolution
    Gong, Zhaori
    Wang, Nannan
    Cheng, De
    Jiang, Xinrui
    Xin, Jingwei
    Yang, Xi
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Pragmatic degradation learning for scene text image super-resolution with data-training strategy
    Yang, Shengying
    Xie, Lifeng
    Ran, Xiaoxiao
    Lei, Jingsheng
    Qian, Xiaohong
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [34] IRE: Improved Image Super-Resolution Based on Real-ESRGAN
    Zhu, Zhengwei
    Lei, Yushi
    Qin, Yilin
    Zhu, Chenyang
    Zhu, Yanping
    IEEE ACCESS, 2023, 11 : 45334 - 45348
  • [35] A Survey of Deep Learning Video Super-Resolution
    Baniya, Arbind Agrahari
    Lee, Tsz-Kwan
    Eklund, Peter W.
    Aryal, Sunil
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (04): : 2655 - 2676
  • [36] Scene Text Image Super-Resolution Via Semantic Distillation and Text Perceptual Loss
    Zhao, Cairong
    Shu, Rui
    Feng, Shuyang
    Zhu, Liang
    Wang, Xuekuan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1153 - 1164
  • [37] Unsupervised Denoising for Super-Resolution (UDSR) of Real-World Images
    Prajapati, Kalpesh
    Chudasama, Vishal
    Patel, Heena
    Sarvaiya, Anjali
    Upla, Kishor
    Raja, Kiran
    Ramachandra, Raghavendra
    Busch, Christoph
    IEEE ACCESS, 2022, 10 : 122329 - 122346
  • [38] Dictionary Learning for Image Super-resolution
    Li Juan
    Wu Jin
    Yang Shen
    Liu Jin
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 7195 - 7199
  • [39] Lightweight Image Super-Resolution With Expectation-Maximization Attention Mechanism
    Zhu, Xiangyuan
    Guo, Kehua
    Ren, Sheng
    Hu, Bin
    Hu, Min
    Fang, Hui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1273 - 1284
  • [40] Deep Learning-Based Single-Image Super-Resolution: A Comprehensive Review
    Chauhan, Karansingh
    Patel, Shail Nimish
    Kumhar, Malaram
    Bhatia, Jitendra
    Tanwar, Sudeep
    Davidson, Innocent Ewean
    Mazibuko, Thokozile F. F.
    Sharma, Ravi
    IEEE ACCESS, 2023, 11 : 21811 - 21830