Minimal generation of transitive permutation groups

被引:5
作者
Tracey, Gareth M. [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Group theory; Finite group theory; Permutation groups; Combinatorics; SUBGROUPS;
D O I
10.1016/j.jalgebra.2018.04.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper discusses upper bounds on the minimal number of elements d(G) required to generate a transitive permutation group G, in terms of its degree n, and its order vertical bar G vertical bar. In particular, we reduce a conjecture of L. Pyber on the number of subgroups of the symmetric group Sym(n). We also prove that our bounds are best possible. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 100
页数:61
相关论文
共 39 条
  • [11] Cameron Peter J., 1999, London Mathematical Society Student Texts, V45
  • [12] CHAINS OF SUBGROUPS IN SYMMETRIC-GROUPS
    CAMERON, PJ
    SOLOMON, R
    TURULL, A
    [J]. JOURNAL OF ALGEBRA, 1989, 127 (02) : 340 - 352
  • [13] The Transitive Permutation Groups of Degree 32
    Cannon, John J.
    Holt, Derek F.
    [J]. EXPERIMENTAL MATHEMATICS, 2008, 17 (03) : 307 - 314
  • [14] Conway J. H., 1985, MATHBB ATLAS FINITE
  • [15] Curtis C.W., 1988, REPRESENTATION THEOR, VI
  • [16] A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS
    DILWORTH, RP
    [J]. ANNALS OF MATHEMATICS, 1950, 51 (01) : 161 - 166
  • [17] Doerk K., 1992, De Gruyter Exp. Math., V4, pxiv + 891
  • [18] Minimal and random generation of permutation and matrix groups
    Holt, Derek F.
    Roney-Dougal, Colva M.
    [J]. JOURNAL OF ALGEBRA, 2013, 387 : 195 - 214
  • [19] Isaacs T.M., 1994, CHARACTER THEORY FIN
  • [20] Kleidman P. B., 1990, LMS Lecture Note Series, V129