Invariant Measures for the n-Dimensional Border Collision Normal Form

被引:5
作者
Glendinning, Paul [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 12期
基金
英国工程与自然科学研究理事会;
关键词
Border collision bifurcation; attractor; piecewise smooth systems; piecewise affine systems; MULTIDIMENSIONAL PIECEWISE AFFINE; BIFURCATIONS; ATTRACTORS; SMOOTH; MAPS;
D O I
10.1142/S0218127414501648
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The border collision normal form is a continuous piecewise affine map of R-n with applications in piecewise smooth bifurcation theory. We show that these maps have absolutely continuous invariant measures for an open set of parameter space and hence the attractors have Hausdorff (fractal) dimension n. If n = 2 the attractors have topological dimension two, i.e. they contain open sets, and if n > 2 then they have topological dimension n generically.
引用
收藏
页数:11
相关论文
共 34 条
[1]   Border collision bifurcations in two-dimensional piecewise smooth maps [J].
Banerjee, S ;
Grebogi, C .
PHYSICAL REVIEW E, 1999, 59 (04) :4052-4061
[2]   Bifurcations in two-dimensional piecewise smooth maps - Theory and applications in switching circuits [J].
Banerjee, S ;
Ranjan, P ;
Grebogi, C .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2000, 47 (05) :633-643
[3]   Robust chaos [J].
Banerjee, S ;
Yorke, JA ;
Grebogi, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (14) :3049-3052
[4]   HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
ELTON, J ;
HARDIN, D ;
MASSOPUST, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1218-1242
[5]  
Bischi GI, 2000, CHAOS SOLITON FRACT, V11, P543, DOI 10.1016/S0960-0779(98)00130-1
[6]   Absolutely continuous invariant measures for generic multi-dimensional piecewise affine expanding maps [J].
Buzzi, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (09) :1743-1750
[7]  
Buzzi J, 2001, ERGOD THEOR DYN SYST, V21, P689
[8]  
Buzzi J, 2001, AMS P S PUR MATH, V69, P749
[9]  
Buzzi J., 2000, ERGOD TH DYN SYST, V20, P697
[10]   Sums of Cantor sets yielding an interval [J].
Cabrelli, CA ;
Hare, KE ;
Molter, UM .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 73 :405-418