Templated assembly of micropatterned Au-Ni nanoparticles on laser interference-structured surfaces by thermal dewetting

被引:3
作者
Wang, Lu [1 ,3 ]
Dong, Litong [1 ,3 ]
Li, Li [1 ,3 ]
Ding, Ran [1 ]
Liu, Jinyun [2 ]
Zhang, Wenxiao [1 ,3 ]
Wang, Ying [1 ,3 ]
Weng, Zhankun [1 ,3 ]
Guo, Xudong [1 ]
Wang, Zuobin [1 ,3 ]
机构
[1] Changchun Univ Sci & Technol, Int Res Ctr Nano Handling & Mfg China, Changchun 130022, Jilin, Peoples R China
[2] North China Univ Sci & Technol, Coll Informat Engn, Tangshan 063210, Peoples R China
[3] Changchun Univ Sci & Technol, Minist Educ, Key Lab Cross Scale Micro & Nano Mfg, Changchun 130022, Jilin, Peoples R China
基金
国家重点研发计划;
关键词
Micropatterned nanoparticles; Templated dewetting; Bimetallic nanoparticles; Direct laser interference ablation; Rayleigh instability; Dual-scale structures; BIMETALLIC NANOPARTICLES; ARRAYS; SILICON; NANOCRYSTALS; FABRICATION; FILMS;
D O I
10.1016/j.jmmm.2019.165876
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we introduce a method for the assembly of micropatterned bimetallic nanoparticles (NPs) with controllable patterns and particle sizes on laser interference-structured substrates. The microstructures of interference patterning in conjunction with the nanostructures fabricated by the direct laser interference ablation (DLIA) were used as the templates for the assembly of patterned NPs in thermal dewetting processes. The location and particle size of micropatterned Au-Ni NPs formed were well-controlled by the nanostructures on the substrate surface. The magnetic domain pattern of as-annealed Au-Ni NPs is consistent with the topography of the silicon templates. The DLIA method provides a one-step new way for the large-area and high throughput fabrication of patterned NPs with the templated dewetting method. It can be easily extended to many metal combinations and has wide applications such as magnetic recording, plasmon-enhancement and other functional nanostructured elements and devices.
引用
收藏
页数:8
相关论文
共 51 条
  • [11] Dynamics of liquid nanojets
    Eggers, J
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (08)
  • [12] The impact of fabrication conditions on the quality of Au nanoparticle arrays on dimpled Ta templates
    El-Sayed, Hany A.
    Molero, Hebert M.
    Birss, Viola I.
    [J]. NANOTECHNOLOGY, 2012, 23 (43)
  • [13] Self-Assembly versus Directed Assembly of Nanoparticles via Pulsed Laser Induced Dewetting of Patterned Metal Films
    Fowlkes, Jason D.
    Kondic, Lou
    Diez, Javier
    Wu, Yueying
    Rack, Philip D.
    [J]. NANO LETTERS, 2011, 11 (06) : 2478 - 2485
  • [14] Ni/Au hybrid nanoparticle arrays as a highly efficient, cost-effective and stable SERS substrate
    Fu, Qun
    Wong, Kin Mun
    Zhou, Yi
    Wu, Minghong
    Lei, Yong
    [J]. RSC ADVANCES, 2015, 5 (08): : 6172 - 6180
  • [15] Solid-state dewetting for ordered arrays of crystallographically oriented metal particles
    Giermann, AL
    Thompson, CV
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (12) : 1 - 3
  • [16] Separating dipolar broadening from the intrinsic switching field distribution in perpendicular patterned media
    Hellwig, O.
    Berger, A.
    Thomson, T.
    Dobisz, E.
    Bandic, Z. Z.
    Yang, H.
    Kercher, D. S.
    Fullerton, E. E.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (16)
  • [17] Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films
    Henley, SJ
    Carey, JD
    Silva, SRP
    [J]. PHYSICAL REVIEW B, 2005, 72 (19)
  • [18] Dewetting of Au/Ni bilayer films on prepatterned substrates and the formation of arrays of supersaturated Au-Ni nanoparticles
    Herz, Andreas
    Wang, Dong
    Schaaf, Peter
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2014, 32 (02):
  • [19] Self-Assembled Three-Dimensional Nanocrown Array
    Hong, Soongweon
    Kang, Taewook
    Choi, Dukhyun
    Choi, Yeonho
    Lee, Luke P.
    [J]. ACS NANO, 2012, 6 (07) : 5803 - 5808
  • [20] Bio-inspired hierarchical patterning of silicon by laser interference lithography
    Hu, Yaowei
    Wang, Zuobin
    Weng, Zhankun
    Yu, Miao
    Wang, Dapeng
    [J]. APPLIED OPTICS, 2016, 55 (12) : 3226 - 3232