SPVdF-HFP/SGO nanohybrid proton exchange membrane for the applications of direct methanol fuel cells

被引:54
作者
Hariprasad, Ranganathan [1 ]
Vinothkannan, Mohanraj [1 ,2 ]
Kim, Ae Rhan [3 ,4 ]
Yoo, Dong Jin [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Hydrogen & Fuel Cell Res Ctr, Dept Energy Storage Convers Engn, Grad Sch, Jeonju 54896, Jeollabuk Do, South Korea
[2] Chonbuk Natl Univ, Dept Life Sci, Jeonju, Jeollabuk Do, South Korea
[3] Chonbuk Natl Univ, Business Incubat Ctr, Dept Bioenvironm Chem, Jeonju 54896, Jeollabuk Do, South Korea
[4] Chonbuk Natl Univ, Business Incubat Ctr, R&D Ctr CANUTECH, Jeonju 54896, Jeollabuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
SGO; SPVDF-HFP; proton conductivity; water uptake; hybrid membrane; PVDF-CO-HFP; POLYMER ELECTROLYTE MEMBRANES; SULFONATED GRAPHENE OXIDE; ACID COMPOSITE MEMBRANES; FUNCTIONALIZED GRAPHENE; POLY(PHENYL ACRYLATE); BLENDS; CROSSOVER; POLY(STYRENE-CO-ACRYLONITRILE); CONDUCTIVITY;
D O I
10.1080/01932691.2019.1660672
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfonated poly (vinylidene fluoride-co-hexafluoropropylene) (SPVdF-HFP)/sulfonated graphene oxide (SGO) hybrid membrane was prepared via solution casting process. Incorporation of SGO nanosheets into SPVdF-HFP matrix increases the density of sulfonic acid moieties of hybrid membrane. This offer better water uptake, good proton conductivity, than pristine SPVdF-HFP membrane. Additionally, the complex structure generated between SGO and membrane chains helps to reduce methanol uptake and swelling ratio of the hybrid membrane. The formation of electrostatic interaction between membrane backbone and SGO skeleton helps the SPVdF-HFP/SGO to retained lower weight loss than SPVdF-HFP during TGA analysis. The presence of SGO nanosheets in membrane matrix is confirmed by morphological studies. The SPVdF-HFP/SGO membrane achieved maximum proton conductivity of 7.8 mS/cm at 70 degrees C and low methanol permeability of 2.567 x 10(-7) cm(2)/s at 70 degrees C whereas the pristine SPVdF-HFP membrane exhibits 1.7 mS/cm and 3.105 x 10(-7) cm(2)/s. From the obtained good results of hybrid membrane, we believe that the SPVdF-HFP/SGO would be a promising candidate for the application of DMFCs.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [41] Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells
    Su, Yu-Huei
    Liu, Ying-Ling
    Sun, Yi-Ming
    Lai, Juin-Yih
    Wang, Da-Ming
    Gao, Yan
    Liu, Baijun
    Guiver, Michael D.
    JOURNAL OF MEMBRANE SCIENCE, 2007, 296 (1-2) : 21 - 28
  • [42] Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells
    Wang, C. -H.
    Chen, C. -C.
    Hsu, H. -C.
    Du, H. -Y.
    Chen, C. -R
    Hwang, J. -Y.
    Chen, L. C.
    Shih, H. -C.
    Stejskal, J.
    Chen, K. H.
    JOURNAL OF POWER SOURCES, 2009, 190 (02) : 279 - 284
  • [43] Thermally crosslinked sulfonated polyethersulfone proton exchange membranes for direct methanol fuel cells
    Gil, Seung Chul
    Kim, Jin Chul
    Ahn, Dahee
    Jang, Jin-Sung
    Kim, Haekyoung
    Jung, Jin Chul
    Lim, Seongyop
    Jung, Doo-Hwan
    Lee, Wonmok
    JOURNAL OF MEMBRANE SCIENCE, 2012, 417 : 2 - 9
  • [44] Cyclic Olefin Copolymer/Photoinitiator Proton Exchange Membranes for Direct Methanol Fuel Cells
    Chiu, Hsien-Tang
    Chuang, Chao-Yin
    Wang, Chia-Tian
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2013, 52 (14) : 1467 - 1473
  • [45] Nanoceramic Oxide Hybrid Electrolyte Membranes for Proton Exchange Membrane Fuel Cells
    Xu, Feng
    Mu, Shichun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (02) : 1169 - 1180
  • [46] A graphene oxide polymer brush based cross-linked nanocomposite proton exchange membrane for direct methanol fuel cells
    Yang, Tianjian
    Li, Zhongli
    Lyu, Huilong
    Zheng, Jianjun
    Liu, Jinglan
    Liu, Fanna
    Zhang, Ziyong
    Rao, Huaxin
    RSC ADVANCES, 2018, 8 (28): : 15740 - 15753
  • [47] Preparation and performance control of PVA proton exchange membrane incorporating ionic liquids with varying ΔpKa for direct methanol fuel cells
    Pan, Jiaxin
    Wang, Zhiwei
    Zhang, Zhongli
    Chen, Jinyao
    Cao, Ya
    JOURNAL OF POWER SOURCES, 2025, 629
  • [48] Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges
    Tellez-Cruz, Miriam M.
    Escorihuela, Jorge
    Solorza-Feria, Omar
    Compan, Vicente
    POLYMERS, 2021, 13 (18)
  • [49] A novel proton exchange membrane based on sulfo functionalized porous silicon for monolithic integrated micro direct methanol fuel cells
    Wang, Mei
    Liu, Litian
    Wang, Xiaohong
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 253 : 621 - 629
  • [50] Study on improvement of the proton conductivity and anti-fouling of proton exchange membrane by doping SGO@SiO2 in microbial fuel cell applications
    Xu, Qibin
    Wang, Lei
    Li, Chen
    Wang, Xudong
    Li, Cuicui
    Geng, Yatian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) : 15322 - 15332