Background: O-GlcNAcylation is a reversible protein post-translational modification, where O-GlcNAc moiety is attached to nucleocytoplasmic protein by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA). Although O-GlcNAc modification widely occurs in eukaryotic cells, the budding yeast Saccharomyces cerevisiae notably lacks this protein modification and the genes for the GlcNAc transferase and hydrolase. Methods: Human OGT isoforms and OGA were ectopically expressed in S. cerevisiae, and the effects of their expressions on yeast growth and O-GlcNAc modification levels were assessed. Results: Expression of sOGT, in S. cerevisiae catalyzes the O-GlcNAc modification of proteins in vivo; conversely, the expression of OGA mediates the hydrolysis of these sugars. sOGT expression causes a severe growth defect in yeast cells, which is remediated by the co-expression of OGA. The direct analysis of yeast proteins demonstrates protein O-GlcNAcylation is dependent on sOGT expression; conversely, the hydrolysis of these sugar modifications is induced by co-expression of OGA. Protein O-GlcNAcylation and the growth defects of yeast cells are caused by the O-GlcNAc transferase activity because catalytically inactive sOGT does not exhibit toxicity in yeast cells. Expression of another OGT isoform, ncOGT, also results in a growth defect in yeast cells. However, its toxicity is largely attributed to the TPR domain rather than the O-GlcNAc transferase activity. Conclusions: O-GlcNAc cycling can occur in yeast cells, and OGT and OGA activities can be monitored via yeast growth. General significance: Yeast cells may be used to assess OGT and OGA. (C) 2017 Elsevier B.V. All rights reserved.