H-matrix approximability of inverses of discretizations of the fractional Laplacian

被引:0
作者
Karkulik, Michael [1 ]
Melenk, Jens Markus [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Ave Espana 1680, Valparaiso, Chile
[2] Tech Univ Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, Vienna, Austria
基金
奥地利科学基金会;
关键词
Hierarchical matrices; Fractional Laplacian; 65N30; 65F05; 65F30; 65F50; FAST DIRECT SOLVER; STRUCTURED LINEAR-SYSTEMS; FINITE-ELEMENT-METHOD; INTEGRAL-EQUATIONS; DIFFERENTIAL-EQUATIONS; EXTENSION PROBLEM; BEM MATRICES; APPROXIMATION; REGULARITY; FACTORIZATION;
D O I
10.1007/s10444-019-09718-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The integral version of the fractional Laplacian on a bounded domain is discretized by a Galerkin approximation based on piecewise linear functions on a quasiuniform mesh. We show that the inverse of the associated stiffness matrix can be approximated by blockwise low-rank matrices at an exponential rate in the block rank.
引用
收藏
页码:2893 / 2919
页数:27
相关论文
共 63 条
[1]   A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian [J].
Acosta, Gabriel ;
Bersetche, Francisco M. ;
Pablo Borthagaray, Juan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) :784-816
[2]   A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :472-495
[3]  
Adams R. A., 1975, SOBOLEV SPACES
[4]   Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver [J].
Ainsworth, Mark ;
Glusa, Christian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 :4-35
[5]  
[Anonymous], THESIS
[6]  
[Anonymous], 1955, Ann. Inst. Fourier (Grenoble)
[7]  
Bebendorf M, 2000, NUMER MATH, V86, P565, DOI 10.1007/s002110000192
[8]   Hierarchical LU decomposition-based preconditioners for BEM [J].
Bebendorf, M .
COMPUTING, 2005, 74 (03) :225-247
[9]   Why finite element discretizations can be factored by triangular hierarchical matrices [J].
Bebendorf, Mario .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) :1472-1494
[10]  
Börm S, 2010, EMS TRACTS MATH, V14, P1, DOI 10.4171/091