Fast determination of sample thickness through scanning moire fringes in scanning transmission electron microscopy

被引:2
作者
Nan, Pengfei [1 ]
Liang, Zhiyao [1 ]
Zhang, Yue [1 ]
Liu, Yangrui [1 ]
Song, Dongsheng [1 ]
Ge, Binghui [1 ]
机构
[1] Anhui Univ, Inst Phys Sci & Informat Technol, Key Lab Struct & Funct Regulat Hybrid Mat, Minist Educ,Informat Mat & Intelligent Sensing La, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Thickness determination; Scanning moire fringes; Beam-sensitive materials; Scanning transmission electron microscopy; FERROELECTRICITY;
D O I
10.1016/j.micron.2022.103230
中图分类号
TH742 [显微镜];
学科分类号
摘要
Sample thickness is an important parameter in transmission electron microscopy (TEM) imaging for interpreting image contrast and understanding the relationship between properties and microstructure. In this study, we introduce a method for sample thickness determination in scanning TEM (STEM) mode based on scanning moire fringes (SMFs). Focal-series SMF imaging is used and sample thickness can be determined in situ at a medium magnification range, with beam damage and contamination avoided to a large extent. It provides a fast and convenient approach for determining sample thickness in TEM imaging, which is particularly useful for beamsensitive materials.
引用
收藏
页数:5
相关论文
共 16 条
  • [1] Local sample thickness determination via scanning transmission electron microscopy defocus series
    Beyer, A.
    Straubinger, R.
    Belz, J.
    Volz, K.
    [J]. JOURNAL OF MICROSCOPY, 2016, 262 (02) : 171 - 177
  • [2] Scanning moire fringe imaging for quantitative strain mapping in semiconductor devices
    Kim, Suhyun
    Lee, Sungho
    Oshima, Yoshifumi
    Kondo, Yukihito
    Okunishi, Eiji
    Endo, Noriaki
    Jung, Jaeryong
    Byun, Gwangsun
    Lee, Sunyoung
    Lee, Kyupil
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (16)
  • [3] Magnified pseudo-elemental map of atomic column obtained by Moire method in scanning transmission electron microscopy
    Kondo, Yukihito
    Okunishi, Eiji
    [J]. MICROSCOPY, 2014, 63 (05) : 391 - 395
  • [4] Phase contrast STEM for thin samples: Integrated differential phase contrast
    Lazic, Ivan
    Bosch, Eric G. T.
    Lazar, Sorin
    [J]. ULTRAMICROSCOPY, 2016, 160 : 265 - 280
  • [5] Position averaged convergent beam electron diffraction: Theory and applications
    LeBeau, James M.
    Findlay, Scott D.
    Allen, Leslie J.
    Stemmer, Susanne
    [J]. ULTRAMICROSCOPY, 2010, 110 (02) : 118 - 125
  • [6] A review of sample thickness effects on high-resolution transmission electron microscopy imaging
    Li, Shouqing
    Chang, Yunjie
    Wang, Yumei
    Xu, Qiang
    Ge, Binghui
    [J]. MICRON, 2020, 130
  • [7] Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
    Li, Xueming
    Mooney, Paul
    Zheng, Shawn
    Booth, Christopher R.
    Braunfeld, Michael B.
    Gubbens, Sander
    Agard, David A.
    Cheng, Yifan
    [J]. NATURE METHODS, 2013, 10 (06) : 584 - +
  • [8] Direct Observation of Thickness Dependence of Ferroelectricity in Freestanding BaTiO3 Thin Film
    Li, Yueliang
    Yu, Rong
    Zhou, Huihua
    Cheng, Zhiying
    Wang, Xiaohui
    Li, Longtu
    Zhu, Jing
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2015, 98 (09) : 2710 - 2712
  • [9] Structure of the TRPV1 ion channel determined by electron cryo-microscopy
    Liao, Maofu
    Cao, Erhu
    Julius, David
    Cheng, Yifan
    [J]. NATURE, 2013, 504 (7478) : 107 - +
  • [10] Scanning Moire Fringe Method: A Superior Approach to Perceive Defects, Interfaces, and Distortion in 2D Materials
    Lin, Yung-Chang
    Ji, Hyun Goo
    Chang, Li-Jen
    Chang, Yao-Pang
    Liu, Zheng
    Lee, Gun-Do
    Chiu, Po-Wen
    Ago, Hiroki
    Suenaga, Kazu
    [J]. ACS NANO, 2020, 14 (05) : 6034 - 6042