A parametric analysis of the nonlinear dynamics of bistable vibration-based piezoelectric energy harvesters

被引:23
作者
Costa, Lua Guedes [1 ]
da Silva Monteiro, Luciana Loureiro [1 ]
Calas Lopes Pacheco, Pedro Manuel [1 ]
Savi, Marcelo Amorim [2 ]
机构
[1] Ctr Fed Educ Tecnol Celso Suckow da Fonseca, Dept Mech Engn, CEFET RJ, Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Ctr Nonlinear Mech, Dept Mech Engn, COPPE, POB 68-503, BR-21941972 Rio De Janeiro, Brazil
关键词
Energy harvesting; piezoelectricity; nonlinear dynamics; chaos; bistable systems; ENHANCEMENT; PERFORMANCE; BEAM; SIMULATION;
D O I
10.1177/1045389X20963188
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Piezoelectric materials exhibit electromechanical coupling properties and have been gained importance over the last few decades due to their broad range of applications. Vibration-based energy harvesting systems have been proposed using the direct piezoelectric effect by converting mechanical into electrical energy. Although the great relevance of these systems, performance enhancement strategies are essential to improve the applicability of these system and have been studied substantially. This work addresses a numerical investigation of the influence of cubic polynomial nonlinearities in energy harvesting systems considering a bistable structure subjected to harmonic excitation. A deep parametric analysis is carried out employing nonlinear dynamics tools. Results show complex dynamical behaviors associated with the trigger of inter-well motion. Electrical power output and efficiency are monitored in order to evaluate the configurations associated with best system performances.
引用
收藏
页码:699 / 723
页数:25
相关论文
共 42 条
[1]   Piezoelectric Vibration-Based Energy Harvesting Enhancement Exploiting Nonsmoothness [J].
Ai, Rodrigo ;
Monteiro, Luciana L. S. ;
Monteiro Jr, Paulo Cesar C. ;
Pacheco, Pedro M. C. L. ;
Savi, Marcelo A. .
ACTUATORS, 2019, 8 (01)
[2]   Nonlinear mechanism in MEMS devices for energy harvesting applications [J].
Ando, B. ;
Baglio, S. ;
Trigona, C. ;
Dumas, N. ;
Latorre, L. ;
Nouet, P. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (12)
[3]  
[Anonymous], 2011, PIEZOELECTRIC ENERGY, DOI DOI 10.1002/9781119991151.APP1
[4]   A piezoelectric energy harvester with a mechanical end stop on one side [J].
Blystad, Lars-Cyril Julin ;
Halvorsen, Einar .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2011, 17 (04) :505-511
[5]   Numerical investigation of nonlinear mechanical and constitutive effects on piezoelectric vibration-based energy harvesting [J].
Cellular, Ana Carolina ;
da Silva Monteiro, Luciana L. ;
Savi, Marcelo A. .
TM-TECHNISCHES MESSEN, 2018, 85 (09) :565-579
[6]   Piezoelectric buckled beams for random vibration energy harvesting [J].
Cottone, F. ;
Gammaitoni, L. ;
Vocca, H. ;
Ferrari, M. ;
Ferrari, V. .
SMART MATERIALS AND STRUCTURES, 2012, 21 (03)
[7]   Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation [J].
De Paula, Aline S. ;
Inman, Daniel J. ;
Savi, Marcelo A. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 54-55 :405-416
[8]   Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters [J].
duToit, NE ;
Wardle, BL ;
Kim, SG .
INTEGRATED FERROELECTRICS, 2005, 71 :121-160
[9]   Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling [J].
Erturk, A. ;
Inman, D. J. .
JOURNAL OF SOUND AND VIBRATION, 2011, 330 (10) :2339-2353
[10]   A piezomagnetoelastic structure for broadband vibration energy harvesting [J].
Erturk, A. ;
Hoffmann, J. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2009, 94 (25)